How To Get On The SWL Bandwagon Radio-TV ${ }^{3}$ WHIIES RDNO LOGC EXPERIMENTER

 FEBRUARY-MARCH 75\$
WHY FLEA-POWER HAMS HAVE MORE FUN

Get into the act by building MINI-MITTER!
 QRP Transmitter is

- Peanut-Sized
- Band-Switched
- Crystal-Controlled

AND NOW-
A TAPELESS
TV RECORDER!

COMPLETE PLANS!
 TWO GREAT SCOPE ACCESSORIES!

- Dual-Trace Signal Switcher
- Dynamic Duo Transistor Checker

EICO Makes It Possible

Uncompromising engineering - for value does it! You save up to 50% with Eico Kits and Wired Equipment.

Truvohm

Professional Portable Multimeters by EICO. The industry's greatest V-O-M values. Designed, made to. Eico's high standards of professionalism. Each complete with batteries \& lest leads. Backed 100% by famous EICO warranty. Model 100A4, $100,000 \mathrm{n} / \mathrm{V}, \$ 34.95$. Model 30A4, 30,000』/V, \$19.95. Model 30A3, 30,000 n $/ \mathrm{V}, \$ 15.95$. Model 20A3, 20,000 $/ \mathrm{V}, \$ 12.95$. Model 4A3, 4000n/V, $\$ 8.95$ Model IA1, $1000 \Omega / \mathrm{V}, \$ 5.95$.

Citizen's Band

Automotive

ICO 888-Car/Boat Engine Analyzer. For all $6 \mathrm{~V} / 12 \mathrm{~V}$ systems; 4, 6, 8-cyl. engines.
Now you can keep

your car or boat
engine in tip-top shape
with this solid-state, portable, self-powered universal engine analyzer. Completely tests your total ignition/ electrical system.
Complete with a Tune-up \& Trouble-shooting Manual. Model 888; $\$ 44.95$ kit, $\$ 69.95$ wired.

Test Equipment साजन ${ }^{\circ}$
 100 best buys to choose from.

"The Professionals"
-laboratory precision at lowest cost. Model 460 Wideband Direct-Coupled $5^{\prime \prime}$ Oscilloscope. DC-4.5mc for color and B\&W TV service and lab use. Push-pull DC vertical amp., bal. or unbal, input. Automatic sync limiter and amo. $\$ 109.95$ kit, $\$ 149.95$ wired.
Model 232 Peak-to-Peak VTVM. A must for color or B\&W TV and industrial use. 7 non-skip ranges on all 4 functions. With exclusive Uni-Probe. $\$ 29.95$ kit, $\$ 49.95$ wired.

FREE1968 CATALOG

EICO Electtonic Instrument Co., Inc.

$131-0139$ th Ave., Flushing, N,Y. 11352
\square Send me FREE catalog describing the full EICO line of 200 best buys, and name of nearest dealer. Name

Address
City
State

WITH NTS COLOR KITS

Big $25^{\prime \prime}$ Color TV kits Included in new Master Color TV Home Study program. Learn Color TV; keep the new $25^{\prime \prime}$ color TV receiver you build with exciting kits we send you. 10 million homes in this country will have color TV by the end of 1967. This industry needs technicians as never before, and NTS-trained men can move quickly into the big money.

COLOR TV SERVICING BRINGS HIGH PROFITS

New color sets need careful installation, precision tuning and skilled servicing. NTS home
training can put you in this profit picture-prepare you for big pay, security, or start a business of your own.

LIFT OFF...TO A"SPACE AGE" CAREER IN ELECTRONICS

This is the "space age". It offers new opportunitles in communications, industrial electronics, computer technology, and many others. Automation has increased the need for skilled electronics technicians in thousands of manufacturing plants. Only the well trained man makes it big. Industry wants and demands this kind of man ... the NTS man.
Pick your field. Let an NTS Project Method Program help you toward a well-paid career in Electronics wherever you travel.

NEW CAREER KIT . . . FAST, EASY START TO NTS HOME TRAINING

The exclusive Project Method Career Kit helps you move quickly into your training program. Earn while you learn as you progress with your shop-tested Project Method lessons and kits.
Send for the New illustrated NTS Color Catalog. It shows the equipment and kits you work with and keep. Describes in detail the advantages of NTS Project Method Home Training. Tells you everything you need to know about starting your career in electronics.

[^0]
Radio.TV EXPERIMENTER

High FiDFLim

Editor
JULIAN M. SIENKIEWICZ WA2CQL/KMD4313

Managing Editor
RICHARD A. FLANAGAN
KQD2566
Technical Editor W. KRAG BROTBY KQD2828

Art Editor JIM MEDLER

Edttorial Assistant helen parker

Art Director
ANTHONY MACCARRONE
Associate Art Director EUGENE F. LANDINO II

Cover Ant Director IRVING BERNSTEIN

Art Associate barbara gabriel

Advertsting Manager JIM CAPPELLO

Production Direcior LEONARD F. PINTO

Production Manager CARL BARTEE

Assistant Production Manager MICHELLE WOLF́FS

Kit Division Manager WILFRED M. BROWN

President and Publisher B. G. DAVIS

Execusive Vice-President and Assistant Publisher JOEL DAVIS

Vice-President and Editorial Director HERB LEAVY, KMD4529

RADIO-TV EXPERIMENTER, Vol. 24, No. I, is published bi-monthly by SCIENCE \& MECHAN. ICS PUBLISHING CO., a subsidian of Davis Publlcations, Inc. Editorial, business and subseription offices: 505 Park Ave., New York, N.Y. 10022 . One-year subscription Isix issuest - \$4.00; iwo-year subscription 112 issuesi87.00; and three-year subscription 118 issues 1 - $\$ 10.00$. Add 75 c per year for postage outside the U.S.A. and Conoda. Advertising offices: New York, 505 Pork Ave., 212-Pl-2. 6200; Chicago: 520 N. Michigon Ave., 312-527. 0330; Los Angeles: 1709 W. 8th Si., 213-4833582; Atlonta: Pirnie \& Brown, 3108 Pledmont Rid., N.E., 404.233.6729; long Island: Ien Osten, 9 Garden Street, Great Neck, N.Y., 516-487. 3305; Southwestern advertising representotive: Jim Wright, 4 N . Elghth St., St. 'Lovis, 314 CH 1.1965.

RADIO SHACK CATALOG '68 PREVUE

Get the one electronics catalog that isn't "me too"

See the very latest in CB, audio, tape reels and cartridges and cassettes, communications, PA, radios, intercoms, antennas, electronic parts and kits, test equipment, transistors, Life-time-Guaranteed tubes, mikes, speakers, walkie talkies. See what nobody but NOBODY but Radio Shack has. See why "The Shack" is the biggest chain of its kind in the country! See it in colorgravure - the kind of bargains shown on the next 15 pages. Exciting! New! Different! Get the book that isn't "me too" today!

Just Published! FREE! USE COUPON ON PAGE 20

Get Radio Shack's Holiday Special!

with any mail or store order for any item in this special 16-page section

RADIO SHACK SPECLAL PURCHASE!

4 and 8 -TRACK stivero TAPE CARTRIDGES

FOR AUTO AND HOME PLAYERS / \$2 TO \$4 BELOW MARKET!

Februaris-March. 1968

HUGE ASSORTMENT! PRERECORDED

ATTENTION MAIL BUYERS: Space prohibits listing separate titles. Please specify quantity - we will send an assortment of all different titles.

Now you can buy full length 4 -track and 8 -track auto stereo tape cartridges for $\$ 2$ to $\$ 3$ less per reel than ever before! Radio Shack cleaned out a famous U.S. tape cartridge manufacturer of thousands of popular auto stereo cartridges, and we're passing the savings to you! A vast assortment of over 50 titles: shows, jazz, country, folk, pop, western, classical. Buy now while our supply lasts! (NOTE: See recent Radio Shack catalogues for 4 and 8-track tape players at our low, low prices!)

What's your project for our "Build In " radio?

Here's a wired transistor radio in 3 pieces. Dextrous do-it-yourselfers should have a field-day with this one.
You carpenters, metal-workers and gift designers will really appreciate Radio Shack's novel "Build In" - a 6-transistor superhet that's really a kit that isn't a kit. Confused? Part one is the radio, 100% wired, installed in a crystalline $21 / 4 \times 1 \times 31 / 8^{\prime \prime}$ case with the tuning knob sticking out of one end, and 8 wires out of the other. Part two is a separate volume control with built-in switch, knob, and soldered leads. Part three is a $21 / 4^{\prime \prime}$ PM speaker installed in a plastic case, with soldered leads,

The three parts (plus a flat 9V battery, not included) can be installed in, on, or under anything, in just about any desired angle or position. And you don't have to be an engineer - Radio Shack's geniuses have provided a simple, idiot-proof lashup pictorial. Now all you need is the price (just $\$ 6.98$, Cat No. 12-1150) and some Yankee ingenuity! Whether you hide "Build In" in a jug of corn likker, junior's wagon or Tillie's sewing box, the result is sure to please.

The basic radio itself looks like a little jewel, a real work of art - our photo doesn't do it justice. And the "kit that isn't a kit" is another of Radio Shacks's exciting exclusive products that can't be bought elsewhere. Get a "Build In" at your nearest Radio Shack store . . . and start your Christmas project early!

For Store Addresses, Order Form, See Page 20

PM SPEAKER IN CASE

RADIO SHACK PROJECT BOOKS (4c A PROJECT)

"50 EASY TO BUILD SOLID STATE PROJECTS"

Build your own transistor radios, electronic organs, amplifiers, code oscillators, megaphones, generators, etc. Ideal for hobbyists. 62-1050 Net 2.00

"A MODERN TRANSISTOR EACH WORKBOOK"
 Build your own wireless microphone, AM broadcast tuner, audio preamp, PA system, experimenter's power supply, etc. 50 schematics.

62-2025 Not 2.00

MIKES, SPEAKERS, HEADSETS, TOOLS FOR THE ELECIRONICS EXPERIMENTER

BUILD "EI'S" MIGHTY SUB-MINI SPEAKER

4" Acoustic Suspension FE-103 Speaker Sysfem!
The fabulous Realistic FE.103. complere with cabinet construction details as published in Electronics Illustrated! 30-17,000 cps; 15 watts; 8Ω. 40.1197, FE-103, Wi. 5 lbs. Nef 7.95 CONTOUR NETWORK KIT With instructions. 40.808, coll, capacifor, ete., Nef 395

795

MIDGET EARPHONES

For Trmnsistor Radios 0%

MINIATURE PM SPEAKERS FOR TRANSISTOR PROJECTS, RADIOS

8 Ohm Impedance
Small in size but big in sound! Three sizes to choose from: $21 / 2^{\prime \prime}, 21 / 4^{\prime \prime}$, or $2^{\prime \prime}$. All for the same bargain price! 40-247, $21 / 2^{\prime \prime}$, $40-246,21 / 4$,
$40-245$,
2,

ONLY
 98°

Net .98 Net .98 Net .98

STEREO HEADSET
Separote Transducers!

Perfect for use with receivers, tuners, amplifiers, kits and recorders! 8 ohms. 33-1008,

Net 2.79
CRYSTAL MIKE CARTRIDGE

Precision made crystals! Response up to 7000 cy . 270.095 , 8 or. .-..... Net .89

FABULOUS THERMO-ELECTRIC GLUE GUN REALY

WORKS!

60-Second Bonding Plus Instant-set Caulking! No Clamping! No Cleaning!

Makes all other kinds of gluing obsolete! Uses unique hot-melt glue sticks: melted glue bonds permanently in 60 seconds, providing a flexible bond that's perfect for furniture, pottery, meral, leather, plastic or fabric. Use with white sealer sticks for water proof caulking. Glue and caulking included. 64-2860, Gun, 2 lbs.. Nel 5.99 64-2861, 7 Glue sticks, I lb. 64-2862, 7 Sealer stichs Net 49 64-2862, 7 Sealer Sticks, 1 Ib. mend jobs

POWERFUL CERAMIC MAGNETS

- For Recorders, PA, Pagingl

Sensitive! Concealable! Response: 200-300 cps. ใ3. 100 , W4. 8 oz. Nel 1.89

Neck/Hand/Desk Use!
Pencil-slim hi-Z for use at home, studio, or in PA and guitar sys. tems! With cord, stand. 50 K . 33-928, Ship. wt. 2 lbs..... Nel 6.95

Precision designed! Comes complere with UL Cord and Plue. Uses 117 V $A C / D C$. 642182,
1 Ib. Nel 1.89 64-2178, Extra copper Tip .. Nef . 25

 For Store Addresses, Order Form, See Page 20

THESE ELECTRONIC PROJECTS HAVE EARNED CASH AWARDS FOR RADIO SHACK CUSTOMERS

 Build Yourself - or Win Cash by Sending Us Your Own Ideas!

 Build Yourself - or Win Cash by Sending Us Your Own Ideas!

 W. R.

 W. R.

 San Francisco,

 San Francisco, California

 SQUARE WAVE GENERATOR

 SQUARE WAVE GENERATOR}

Check Out the Frequency Response of $\mathrm{Hi}-\mathrm{Fi}$ Amplifiers - Tape Recorders - Preamplifiers

> Use this square wave generator, together with an oscilloscope, to analyze the frequency characteristics of any audio amplificr. The unit is adjustable over a broad range of audio frequencies.

F. R. F.
 Chatsworth.H.S.
 ELIMINATOR/CHARGER

 California
Use Either in Place of a 9-Volt Battery or to Charge Batteries to Full Power. Save \$\$!

SI

Now you can run electronic kits and experiments that use 9V DC power without buying new batteries! Simply plug into any 117 VAC outlet; delivers up to 250 ma . at 9 VDC.

\$\$ FOR YOUR ELECTRONIC IDEAS! Turn Ingenuity and Hobby into Spare-Time Profits!

We are looking for experiments built around Radio Shack or other electronic parts. These will be published regularly in our catalogs. If published by us

WE WILL PAY YOU AN AUTHOR'S FEE and reimburse you for parts bought from us - maximum $\$ 50$ cost. By submitting it, you state it's original with you. If we accept it, it is understood we can publish it for use by our catalog, flyer, book and magazine readers. Submissions cannot be returned. Send description, parts list, stock numbers, and schematic. DO NOT SEND ACTUAL SAMPLE as we will build it here to see if and how it works. Write today!

> SEND TO: Radio Shack, Attn: Lewis Kornfeld, Vice-President 730 Commonwealth Avenue, Boston, Mass. 02215

RADIO SHACK EXCLUSIVE! ADD A SLAVE "WALKIE" To pan pas montis

Crystal-controlled superhet

 receiver ONLY! Add as many ears to your network as you want. Fits in a shirt pocket - an excellent paging or guided tour device!This unusual Radio Shack product, called the Realistic Microsonic 27MC Receiver, comes complete with a Ch. 11 CB crystal - and because it's a plug-in, it can be changed to any of the 23 channels. It's a teeny $31 / 2 \times 21 / 2 \times 13 / 8^{\prime \prime}$. It includes an earphone with clip, and the phone's lead acts as the antenna. So if you want to hide it away as a pager, there's nothing showing. For DX we've included a $16^{\prime \prime}$ telescopic whip to be used only if necessary. Let your imagination run wild with this novel device! 21.109 Microsonic 27MC Receiver

NEW IDEA \# 2 - as a companion to the above, or a wireless CB microphone (!), there's also the Realistic Microsonic CB transmitter. Same size, color, everything. But transmit only, 100 mw of course, with plug-in crystal for Ch. 11. Uses? For example: one of these plus x-number of receivers and you have a guided tour technique that'll never quit!
21-110 Microsonic CB Transmitter
Only 7.95

FREE ACCESSORIES:

- Receiver - earphone and whip antenna
- Transmifter - $35^{\prime \prime}$ telescopic antenna Note: both units include crystals but require a ov transistor battery to operate, 23-464, 29c each.

RADIO SHACK'S FABULOUS SPACE PATROL ${ }^{\circ}$ TWOSOME

February-March, 1968

Talk up to $1 / 4$ mile with our perennial favorite in the 100 MW no-license class. Over 100,000 of these transceivers now in usel "Lock-on" talk switch for continuous uansmission when needed. Extra-long 43" tele. scopic antenna! Channel 14 crystal \& battery included.

405
 PER PAIR

=-ARCHER \rightarrow MICRO

 SPACE PATROL®

PER PAIR

CB'ers MOBIIE renustic TRANSCIVERS!

23-CHANNEL CRYSTAL-CONTROLLED TRANSCEIVER

13995

- 18 Transistors; 4 Diodes!
- Antenna ChangeOver Relay!
- Low Battery Drain!
- Synthesizer Circuitry!
- Illuminated "S" Meter \& Channel Selector!
- Wood Grain E Chrome Front Panel!

Obsoleres all other 23 -channel crystal-controlled wansceivers! High-efficiency -up to 3.5 watts outpur with 5 watts inpur. Dual conversion, with 10.62 Mhz and 455 Khz IF's for sharp selectivity. Sensitivity: $0.25 \mu \mathrm{v}$ at $10 \mathrm{db} \mathrm{S} / \mathrm{N}$. Adjustable squelch control and automatic series gate noise limiter. 12 VDC neg. ground. Plug-in cetamic mike and retractable coil cord, fusable DC power cable, bracker, instructions and hardwase.
$21-124$, TRC-24, Ship. Wt. 6 lbs.
Net 139.95

> - 8.Crystal Controlled Channels!

- All Silicon Transistorsl
79^{95}
Economy priced. Model TRC14 features full 5 -wates inpur, adjustable squelch control and advanced elecuronic anrenna switching. Sensitivity: $1 \mu \mathrm{v}$ for 10 db SN/N. 12 VDC neg. ground. Ser of crystals for channel 11, push-totalk ceramic mike, mounting bracker, DC cable and instructions. $81 / 4 \times 59 / 8 \times 21 / 3^{\prime \prime}$.
21.032 . Ship. Wt. 5 ibs.

Net 79.95 TRC-15 - Same as above but for 12 channel operation, illuminared chanmel selector, die cast panel, extruded rim and coil cable push-ro-talk. 21-033, Wt. 5 lbs.

Net 89.95

EASY-TO-USE =miczonta TEST EQUIPMENT!

1,000 OHMS/VOLT MULTITESTER

595
 Foctory
 Wired

- Convenient Thumb-Set Zero Adjustment!
- Reads AC/DC Volts in 3 Ranges: 0.5, 150, 1000!

Only $31 / 2 \times 2 \frac{1}{8} \times 1 \prime 1$
Great for home or workshop! Pin jacks for all 5 ranges; 2-color $13 / 4$ " meter scale. DC Current 0.150 ma. Resistance: $0-100,000$ ohms. Accuracy is $\pm 3 \%$ of full scale value on DC ranges, $\pm 4 \%$ of full scale on AC ranges. A rugged black bakelite case. Comes with pair of color-coded test leads, instructions, battery.
22-4027, Ship. Wt. I lb.
Net 5.95

20,000 OHMS/VOLT MULTITESTER

Single-knob range selector with separate ohms adjustment. Spec.: DC Volts $0-3 / 15 / 60 / 300 / 600 /$ 1200@20,000 ohms/volt. AC Volts 0-6/30/120/ 600/1200@10,000 ohms/volt. DC Current 0-60 μ, $\mathrm{a} / 3 \mathrm{ma}, 30 \mathrm{ma}, 300 \mathrm{ma}$. Resistance range $0-12 \mathrm{~K}$, $120 \mathrm{~K}, 1.2 \mathrm{meg}$ and 12 meg (at center scale 60,600 , $6 \mathrm{~K} \& 60 \mathrm{~K}$). Decibels: -20 to +63 db (5 ranges). 22-022, Ship. Wi. 2 lbs .

Net 14.95

50,000 OHMS/VOLT MULTITESTER

Only $7 \times 51 / 2 \times 55 /{ }^{\prime \prime \prime}$
Great for technicians, mechanics and hobbyists. Specs: DC volts: 0-0.5-2.5-10-50-250-500-1000V (e) $50,000 \Omega /$ volts. AC volts: $0 \cdot 2.5 \cdot 10-50-250-$ 1000V@12,500 $\Omega /$ volts. DC current: 0-25ma$2.5 \mathrm{ma}-250 \mathrm{ma}-1 \mathrm{amp}-10 \mathrm{amps}$. DC Resistance: 0 $10,000 / 100,000 / 1$ meg./10 meg-ohms. Center scale: $90 / 900 / 9000 / 900,000$ ohms. Decibels: -20 to +62 (5 Ranges).
22-150. Ship. Wt. $51 / 2 \mathrm{lbs}$
Net 27.95

IIMICRANTA 61/2" VTVM METER

- Precision Resistors!
- Measures Peak-to-Peak and RMS (7 Ranges on Each Function)!
- Frequency Response: 30 cps to 10 mc !

[^1]Features a zero-center scale for alignment of FMTV detector circuits. Specs: AC volts: RMS 0.1 to $1500 \mathrm{~V} .(7$ ranges); DC volts: 0.1 to 1500 V . (7 ranges). Peak-to-peak $4-4000 \mathrm{~V}$. (7 ranges). Output -20 db to +65 db (7 ranges). Resistance: 0.2Ω to 1000 meg-ohms (7 ranges). Tubes: 12 AU 7 , 6ACS and SR1A. Power: 117 VAC, 50/60 cycles. 22.025. Ship. Wt. 7 lbs.

Net' 39.95

EXCITING ELECTRONIC PARTS VALUES

JUMPER LEAD CLIPS

10 Germ

Equivalent in use co silicon diodes with
lower forward voltage drop. Net. 99
276-821, Wt. $1 / 4 \mathrm{lb}$..........

Set of 10
Ten $14^{\prime \prime}$ jumper lead wires with miniature alligator clips on each end. Leads are color coded or testing! 278-1156, Ship. Wt. 6 oz.

JUMBO 100 PC. RESISTOR PAK

 3-pc pack for general replacement in small radios Variable core runes to 365 mmf runing condenser Tapped for reansistor applications. 270.376 Net 99

STANDARD $1 / 4^{\prime \prime}$ PHONE PLUG
096
Plugs into standard $1 / 4$-inch phone jack. Screw terminal connections. 274-1536, Wi. 4 ot.

INSULATED CLIP SET

With rubber insulators -7 black, 7 red. Solder type Length $1.5 /=$ 270-1545, Ship. wh. 4 oz . \qquad Net .99

Mammoth bargain. S-100 fc. coils in popular colors. Sizes \# 18 thru \# 22 , suitable for most wiring jobs. Suranded and solid rypes. 278-1484, Sh. wt. 2 lbs. Net 2.98

60-PC. TRANSISTOR SURPRISE PAK

Includes NPN's, PNP's. 10W, 20W and $50 W$ transisrors, as well as subminiarure rypes, 60 in all! 276-034, Sh. wf. 2 lbs.

Net 2.98
MINIATURE PUSHBUTTON SPST SWITCHES

Pkg of 5

Momentary pushbutton switches. Normally open circuit. Solder lug terminals, Panel mounting, Red butron and black phenolic housing. $2 \times 33^{\prime \prime}$. 275-1547, Ship. wt. 1/4 Ib...........Net .99

5" VERNIER DIAL

399- 6:1 Drive Ratio! - 5 Blank Scales!

Large face is ideal for rest equipment, calibration, etc. 0-180 logging scale. Hairline pointer $1 / /^{\prime \prime}$ dial shaft in rear can be coupled with another shaft. Plastic see through window, plus large easy-rogtip knob. 274.388, Ship. Wf. I lb. Net 3.99

1" MATCHED KNOB KIT 99'

Black knurled knobs w/polished aluminum inalay. Brass inserts fos $1^{\prime \prime}$ shafe. Ser screw. $1 \times 5 / /^{\prime \prime}$ 2741552. Ship. Wt. 4 oz. Net 99

MINIATURE LAMP ASSEMBLIES

Complete with miniature 6 V bulbs. Contains 2 red and 2 green jewels Mounts in 5/16" hole.
272.344, Ship. Wf. $1 / 4$ ib.

SCREW TERMINAL KIT
99
Kit of 13 Pc.
$11 / 221 / 5$ and $^{23} / /^{\prime \prime}$ lengths, by $5 / \mathbf{g}^{\prime \prime} \mathrm{H}_{8}$ 274.345, Ship. Wi. $1 / 4 \mathrm{lb}$.

3 CIRCUIT PLUG \& JACK

Set of two 3 -circuit $1 / 4^{n}$, phone plugs, jacks. Black bakelite handle. Solder lug terminals. Open circuir jack complete with mounting hardware.
274.323, Shlp. wt. 1/4 lb.

Net .99
$1 / 2 \mathrm{lb}$. Jumbo Pack of Disc Capacitors 249 OVER 300 PIECES! All pop.
ular values and voltages. Most are marked with capacity and voltages. 272-997. Shlp. Wt. $1 / 2$ ib. Net...... Net 2.49

NEON PILOT LIGHTS
 Kit of 3 Buils-in neon lamps. Jewel front; 2 red, 1 yellow For 117 VAC use. With 3 drop ping resistors. $272.338,1 / 4 \mathrm{lb}$. Net .99

Infra-Red Detector Transducer Kit

Parabolic reffector, $3^{\prime \prime \prime}$ fileer, and detector complete wlth pictorial diagram. Wonderful experimenters kit! 276.035, Ship. Wf. $1 / 2 \mathrm{lb}$...... Net 1.98

SEMI-CONDUCTORS FOR THE HOBBYIST

PARCHER \rightarrow
 Replacement Transistors

PNP TYPES

For high frequency, RF.IF, and converter circuiss. Replaces: 2N247. 2N248. 2N252. 2N267. 2N274, 2N308, 2N309. 2N310. 276-412, Wt. 3 or. $\quad 1.29$ For mixer foscillator converter $\begin{array}{lll}\text { circuits. Replaces: } & \text { 2N112, } \\ \text { 2N113 } & \text { 2N114. } \\ \text { 2N135, }\end{array}$ 2N136. 2N137. 2N140. 2N175, erc. 276-401,' Wt. 3 os. 99 For universal IF circuits, Repaces: 2N111. 2N112 2N315, 2N366, 2N406, ${ }_{276}^{276}-402, \mathrm{Wt} .3 \mathrm{oz}$.
… $+\ldots . .$.
For 6 volt audio circuits. RePlaces: 2N77. 2 N104 2N105, 2N107, 2N109, 276-403, Wt. 3 oz. . . 99 For 12 volt zudio circuits. Replaces: 2N36, 2N37, 2N38, 2N41, 2N43, 2N44, 2N4S 2N46, ecc.
276-404, Wt. 3 cz. 99 Por 9 volt audio circuits. Re $\begin{array}{lll}\text { places: } & \text { 2N188, } & 2 \text { 2N189 } \\ \text { 2N190, } & 2 N 191, & 2 N 192\end{array}$ 2N195, 2N196. 2N197. $276-405$, Wt. 3 oz. For auto radio Ap amplifies circuits. Replaces: 2 N 176 2N178, 2N179, 2N234, 2N235: 2N3SB, 2N236, 2N242, etc 276-496. Wt. 3 oz
oz.
1.19

For high power AF circuirs in auto radios. Replaces: 2N173. 2N174. 2N277. 2N278, 2N441, 2N442. 2N443. 2N1515. erc 276-407, Wt. 3 : \qquad 2.29

Silicon Epoxy high gain. Re. places: 2N940-2N946, 2N2333-2N2337. 2N3548. 2 N 3530.
276-420, Wt. 3 or. ... Net 1.09
Silicon Epoxy medium gain.
Replaces: 2N1132, 2N923.
2N928. 2N2372. 2NB59.
2N865.
276-421, Wt. 3 oz. -... Net .99

NPN TYPES

For mixer/oscillator converter circuits. Replaces: 2N193. $2 \mathrm{~N} 194 / \mathrm{A}$. $2 \mathrm{~N} 211.2 \mathrm{~N} 2-12^{\circ}$, 2N233, 2N234, 2N357. 2N358.
276-408, Wi. 3 oz.
1.09

Por universal if amplifer cir. cuits. Replaces: 2N98, 2N99.
 2N147, 2N148, 2N149, erc. For 9 vole AP amplifice circuits. Replaces: 2N35, 2N169A: 2N213. 2N214. 2N228. 2N306. 2N312. 2N313, erc.
276.410, Wt. 3 oz.
-............. .99
For 12 volt AP amplifier cir. cuirs. Replaces: 2N306A. 2N44SA, 2N446A, 2N447A. 2N5S6. 2NS57. 2N587, 2N649, ecc.
276-411, Wf. 3 oz.
-.- .99
Silicon Epoxy high gain. Replaces: 2N3704-2N3709. 2N3415-2N3417. 2N3877.
278-422, Wt. 3 oz, Net 1.09
Silicon Epoxy Medium gain. Replaces: 2N706TPP, 2N3663, 2N3843A, 2N3900. 2N3901, ect.

Silicon Field-Effect

 Transistors

- High Impedance Inputl
- Low Noisel High Gainl
- Characteristics Similar to Pentode Vacuum Tubel

1000's of applications where peatode tubes are used in low.. level circuirs: field streagth meters, "gate dippers," receivers, flea power transmitters, etc. TO-5 case. Includes specifications. 276-664, Sh. wf. 2 o8. Ne 1.98

IBM Component Boards

All quality American made parts. Each board contains at least two transistors, plus loads of other componears: resistors, capacitors, coils, diodes, modules, chokes, and heat sinks. Size: $2 \frac{3 / 8}{}=37 / 8^{11}$. 276-616, $5 \mathrm{~h} . \mathrm{wt}$. $1 / 4 \mathrm{lb}$.

Net 29

3 Amp SiliconControlled Rectifiers

TO. 66 Casel 200 V
Desigaed to deliver loads up 10 3 amps. Ideal for use in speed control opcration, power converfers.
276-1065 1.95 276-1066, T0.66 mig. hdwr. 30

100-Pc. Jumbo Pak Assorted Transistors

Includes
Silicon \& Planars

NPN \& PNP in TO-5 case; power uransistors, cool Ideal in RF \& IF driver. ourput, switching, general audio purposes.
276-544, Sh. wt. I Ib.
Not 3.91

mustal Ingenious New Radio Shack PERFBOX' ${ }^{\text {" }}$ "Professionalizes" Project Building!

The bloody-knuckle brigade will appreciate Radio Shack's effort to eliminate chassis cutting and drilling, and make things prettier!

Somebody at "The Shack"-thank heaven! - must hate metal chassis and the generally sloppy look of breadboard projects. Now they've come up with a bakelite chassis box into which they've installed (4 screws) a $31 / 2^{\prime \prime} \times 6^{\prime \prime}$ perfboard top. But that's not all - the back of the box is pre-drilled for a $21 / 4$ " or other PM speaker, and there's a pre-drilled $1 / 4^{\prime \prime}$ outlet hole on one side! This much-needed item is called the Radio Shack Experimenter's PERFBOX ${ }^{\text {TA. }}$. (Cat. No. 270.097, price $\$ 1.69$) and should sell like film at Expo 67. As an added fillip, there's a companion deal they call Radio Shack Experimenter's 5-Piece Panel Set, consisting of 3 perfboards and 1 aluminum and 1 bakelite panel board, all $31 / 4^{\prime \prime} \times 6^{\prime \prime}$ predrilled to fit the PERFBOX ${ }^{T M}$. The latter two boards are un-perfed (to coin a word), and the 5 -piece set (Cat. No. 270-100, price $\$ 1.69$) should answer just about any need for extending the usefulness of the PERFBOX short of filling it with champagne!

RECOMMENDED PARTS FOR USE IN PERFBOX PROJECTS

> DESIGN, CONSTRUCT YOUR OWN CIRCUITS using these time.saving phenolic boards breadboard or permanent type. $3 / 32^{\prime \prime}$ holes punched on $0.265^{\prime \prime}$ centers. Can be sawed. Shipping weight 1 lb .

UNCLAD PERF-BOARD

- Accepts Miniature Components!
- Easy-In, Easy-Out Mountingl
- Ideal for Modular Constructionl

276-1582, $3.65 \times 6.87 \times 1 / \mathrm{Ib}^{\prime \prime}$
276-1583, 6.87×9.8x1/16"
COPPER-CLAD SOLID BOARD

- Make Your Own Printed Circuitsl
- Qualify-Manufactured Board
- Bonded with Copperl
$276.1586,3.65 \times 6.87 \times 116$ 276 -1587, $6.87 \times 9.8 \times$ Kol $^{\prime \prime}$

COPPER-CLAD PERF-BOARD

- For Printed Circuit Design and Circuit Checkout!
- Easily Etched and Workedl

276-1584, $3.65 \times 6.87 \times 1 / 16^{\prime \prime}$ Net. 89
$276-1585,6.87 \times 9.8 \times 1 / 16^{\prime \prime}$
For Store Addrasses, Order Form, See Page 20

PUSH-IN TERMINAL KIT

Kit of
100

Use with prepunched perf boards. 062 diam. eter holes ($1 / 16^{\prime \prime}$). Sersated slots. Easy multiple connections. 270-1394. $1 / 4 \mathrm{lb}$. Net 1.49

SPRING BANANA PLUGS
Ideal for $3 / 32^{\prime \prime}$ hole perforated boards. Overall length $1^{\prime \prime}$.
Set of 10 270.1543, 2 oz. Nel 994

SOLDERLESS TERMINALS
019
Use with .093 diameter holes. Takes up to 7 leads withour soldering. USA made. Spring ac-
Sel of 15 tion.
$270.1395,4$ oz. Net i9f

20 Power Resistors

Package consists of high. quality vitreous, cand-ohm and wire wound types. Includes 5 to 25 -wate power sesistors; individual catalog net- $\$ 10$! 271-1202, 2 lbs. Net 1.00

4 Subminiature 455 KC IF Transformers

Slug tuned, made for printed circuitry meg., shielded. Size: 3 I $3 / 8$ x $1 / 2$ ". 273.515, 1/4 lb. Not 1.00

40 Coils and Chokes

Shop assortment consisting of RF, OSC, IF, para. sitic, peaking and many more types. Individually purchased, this would cost you \$15! 273.1569, +16

Nef 1.00

Special! 50 Capacifors

Assortment of many types including disc, ceramic, mylar, temperature coeff. cient, molded, paper, oil, Vir-Q. You save $\$ 9$ over industrial ner catalog prices!
272.1199, I lb. Net 1.00

48 Terminal Strips

You ger a wide variety of screw and solder lug type terminal strips with 1 to 6 Jugs. Outstanding value at this low price! 101 uses for the builder and experimenter. 274.1555, I lb........Net 1.00

40 One-Watt Resistors

Here are resistors for hundreds of uses! Assort. ment has Allen Bradley and IRC carbons, with 5% values included. This pack is a regular $\$ 8.00$ catalog net!
271-1576. 1 lb .
Net 1.00

50 Plugs and Sockets

Ideal bench assortment for servicemen, hams, etc. Subminiature and printed circuit rypes included! This assorment saves you $\$ 10$ over individual cas alog prices!
$274-1562 \mathrm{I}$ lb.

35 Precision 1% Resistors

Large assortment of pop. ular $1 / 2,1$ and 2 -watt values; includes encapsulated, bobbin, carbon film, etc. Made by Aerovox, Shellcross, IRC, and otber famous names. 271-1196, 1 lbNel 1.00

8 Sets-RCA Plugs \& Jacks

Qualiry items, ideal for use in phono amplifiers, tuners, recorders, etc. Take advantage of this Radio Shack Special low price!
price!
$274.1575,1 / 2,1 b, \quad$...... Net 1.00

45 Mica Capacitors

 Famous name micas Aerovox, Sangamo; C.D., Aerovox, Sangamo; C.D., etc. This assortment in: cludes popular values 100 mmf to. 01 mf , as well as silver rype condensers. A $\$ 10$ catalog net value! 272.1573, $1 \mathrm{lb} .1 N e t 1.00$

60 Half-Waft Resistors

Made by Allen Bradley and IRC. Many 5% and 10\% rolerance. Color chart. All most popular values. An absolute "must" for hobbyists and kit-builders. 271.1612, 1 16. Net 1.00

35 Disc Type Capacifors

A varied assortment of rypes, including NPO's, Hi.Q. N. 750^{\prime} 's, mylar and ceramic. 10 mm to 01 mf to 6 KV . A $\$ 10$ cas. alog net value!
$272 \cdot 1567,1 / 4 \mathrm{lb}$.
Nef 1.00

4 Transistor Transformers

Made by UTC and Remington Rand. Famous miniatures. Includes sub. ouncer, mike, input types. Color coded leads. 273-1581, 1 lb.Not 1.00

30 2-Watt Resistors

These quality 2-watt resistors are non-inductive. magnetic film, carbon types. Many with 3% values. Made by famousname manufacturers. 271-1211, 1/2 lb. Net 1.00

50 Tubular Capacitors
An assortmens of quality rubular capacitors, 100 mmf to .1 mf to 600 WVDC. Includes molded, paper and porcelain types. $\$ 10$ if purchased individually from catalog! 272-1568, | lb. Ne $\$ 1.00$

35 Miniafure Resistors

World's smallest $1 / 4$-watt Carbon type resistors! All have axial leads; buile for transistor and subminiature circuitry: Assorted values, with resistor color code chart.
271-1566, $1 / 2 \mathrm{lb}$...... Nof 1.00

8 Volume Controls

Most Popular Values

- Contains 8 assorted values including long and shors shaft rypes. A tremendous bargain for servicemen!
271-127, I Jb. \qquad Net 1.00

50 Ceramic Capacisors

Wide variety of popular vaiues by Centralab and other famous-name makers. 10 mmf to .04 mf to KV. Assortment includes tubulars, discs, NPO's, temp. coefficient, eic. 272 -15 66, I lb..... Nei 1.00

150' of Hook-Up Wire

Assortment consists of 6 V rolls of 25° each solid and stranded wire. \# 18 through \#22. Necessary for multinude of jobs and always useful! 278-025, 1/8 lb........Net 1.00

5
 SURPRISE PACKACE!

Loaded with Parts!

The biggest surprise package yet! Enough elecronics components to make your eyes popl Resistors, capacitors, condensers, diodes.. your guess is as good as Ours. The famous-make parts are worth at least $\$ 25.00$!
270-1251. I lb., Net 1.00

BRILLIANT NEW KIT LINE!

 Science Fair
Perf-board electronic projects make soldering optional, let builder re-use parts or change circuit!

At last! - electronic kits that let you work the same way engineers do - by "breadboarding". Designed by Radio Shack's engineers and produced by its new Science Fair Electronics division, the kit line features step-numbered construction data, pictorial, schematic and add-on inseructions.

\section*{AC/DC POWER SUPPLY KIT 6^{95}
 Converts 117 VAC (house current) to either 6 or 9 volts DC. Play battery operated equipment on house line! Also ideal for use with Science Fair ${ }^{\text {Tst }}$ kits \& other projects.

\title{

"OTL" AUDIO

"OTL" AUDIO AMPLIFIER AMPLIFIER KIT KIT 49 49 NO. NO. 28-106

 28-106}

Ideal for use with tuners, mikes, phonograph systems. OTL output. Frequency response up to 15,000 cycles. Rated up to 2 watts peak.

For Store Addresses, Order Form, See Page 20

TRANSISTOR RADIO KIT 395
 No.

28-102
Tunes the standard AM broadcast band; can also be used as a tuner. Battery-operated. Comes complete with earphone. Perfboard construction.

TRANSISTOR ORGAN KIT 595
 NO. 28-101

Each note on the sev-en-note scale is separately tone variable. Unit is battery-operated and features perf-board construction. Fun to build \& operate!

WIRELESS AM MIKE KIT $3^{95} \underset{\substack{\text { NoO } \\ 28-103}}{\text { K. }}$ Transmit through any radio up to 20 feet away! Battery-operated microphone is a real broadcaster! Constructed of sturdy perf-board.

1-TUBE DC RADIO KIT 395

NO. 28-100
Battery-operated! Learn tube theory and build a real working radio. Equipped with sturdy perf-board construction. Kit comes complete with ear. phone.

Now Everyone Can Own a Second Telephone!

 Standard Desk Telephone Ready to Install 795Enjoy the extra convenience of an extra phone! Our most popular style; it's modern, low-cose, and easy to install. Each phone is factory reconditioned to give trouble.free service. Bakelite body and handset; metal base. Dial, bell and coil included. (Note: use of telephane equipment not installed by a telephone company may be subject to local tariff.) 279-371, 5h. wt. 10 lbs. \qquad Net 7.95

Fon Private Phone and Intercom Systems.

- Save Time!
- Save Steps!
- Save Money!

30 Ft. Telephone Extension Cord

Move your phone from room to rooml Highest-quality 4 -conductor flexible cord plus standard relephone jack and plug. Ideal for intercom. Use 2 or more for extra leagth.
279-1261, 5h. wt. 11/4 lbs.
........... Not 2.98
Telephone Plugs \& Jacks
Ideal for making extensions, these plug and jacks each weigh approximately $1 / 4$ pound.
279-366, plug
…
279-367, lack

Coiled Phone Cords

Stretches up to six feer. 3 -conductor. Shipping weight: $1 / 4$ pound. 27e.361 \qquad Net 1.19
Four conductor extends up to fifteen feet. Shipping weight: $1 / 2$ pound. 278.1389 \qquad Net 5.95

Shoulder Rest

Frees both hands! Spring mechanism enables arm to be folded out of sighe when not in use. Easy to attach to any phone. Long lasting metal construction. Manufactured in the United Stazes. Weighe: I pound. 279-606 \qquad Net 1.49

Telephone Wall Jack

Por 2, 3, 4-wire systems. Fits standard wall conduir bozes. 1 lb . 279.1507
 struction sites. Wirhstands extreme remperatures. High output mike can be used with low gain circuits. Adapt to your CB transceiver or sadio. Includes earpiece and 3 -conductor cord 279-1351, Sh. wf. I lb.

Net 2.99

Sound-Powered Elements

Kit of two! Talk withour electricity your voice powers these devices. Hook them up and ralk up to 300 feec. Shipping weight: $1 / 2$ pound. 279.1353

100 Ft. 3-Conductor Telephone Wire

Multi-use 100^{\prime} 3. conductor wire for : telephone work. Ideal for liaking remporary phones for tield uses. 278.370 , $5 \mathrm{~h} . \mathrm{wt} .2$ lbs.

Handset Hanger

Hang up your phone withous curring off party on other end. Ideal for wall telephones. Anodized black aluminum. 279-1528, Sh. wt. 1/4 lb.Net 1.25

Telephone Dials

Standard Western Electric unit. Can be used with automatic control circuits, \& electronic combination lock circuirs. 279.359, Sh. wt. 11/4 lbs.Net 2.99

ORDER BY MAIL FROM YOUR NFAREST RADIO SHACK STORE

Phoonim 390s
armans ARKANSAS
Linfo Rock: University Ploza CALITORNBA
Anoheim: 507 East Kotello Ave
Baliorsfield: Valley Square Shop. Cir
Cowna: Down Stonewond Shoppi
Gunden Grove: 9836 Garden Grove Bl
Glendule: Broodway \& Chevy Chose Dr.
inglewood: 4736 West Century Bird.
Lo Hobra: 1511 West Whittied Blvd.
Long Beoch: 4684 long Beach Blvd.
$0:$ Angeles:
830 W . Oi
830 W. Olympic Blvd.
Mission Hill, $109: 9505$ Centinula Ave.
Mission hill, $109: 9$ Sepulveda Blvd.
Went L.A., 10650 W. Piso Blvd. a
Mountain View: San Antonia Shop Oterland
No. Hollywoad: Laurel plaza Shop. Crr.
Oaitand (Son beandre): Boy Foir Shop. Cir.
Parodene: 1715 East Colarodo Blvd.
omonat 1335 Malt Ave.
Sacramento 600 Fulton Ave
San Bruno: 481 El Camino Rnol
San Diego: Grossmont Shopping Center
Massion Valley, Ctr. West
College Grove Shop. Ctr.
College Grove Shop. Ctr.
San Franciscot 36 Geary Street
Sonto Ano:
2713 South Main St Crr
Sonta Monise: 732 Santa Monl
forrance: 22519 Hawthorne Blvd.
West Covina: 2516 Eosi Workman Aye.
Denver: COLORADO
798 South Santo Fe Dr.
2186 estlond Shopping Center
2186 So. Colorado Bived.
No
Bridgepon: Lofoyetre Plazo
Momden: Memden Morl Shopping Center Monchatter: Monchester Shopping Parkade New Hovent 230 Crown S? New London: New tondon Shop. Cir. Orange: Whiseoure Shop. CirSoomford: 29 High Ridge Rd. Werringron: Jorrington Porkade flolida
Jacksonville: Regency Square Shop. Ctr. W. Polm Beoch 1801 Polm Beach Lake Blved. georgia

917 Peachtree St.

Greenbriar Shopping Center No. Dekolb Shop. Cir., Decatur iminols
Belleville: Bellerue Ploze Shop. Cir. Chisago: Evergreen Ploza at 95 th St.
Harvey: Dinie 526 Dundee Ave.
Marvey: Dixie Squore Shop. Crr.
INDIANA
Richmond: $\mathbf{7 5 3}$ Richmond 5 q . Shop. Crr KANSAS
Kansas City Ronch Mart So. (teawood
Wiehire: Parklane Shop. Ctr KENYUCKY
Bowling Green: Eowling Green Mall Newpont: Newpoirt Ploza, 70 Carothers Rd, LOUISIANA
Gretna: Oakwood Shop. Cir.
New Orleans: 3112 Porls Ave
Shreveport: 1297 Shrove Cipy
MAINE

MAINE
Bangor: 20-24 Broad St.
Portland: Pine Tree Shop. Ctr.
MARYLAND
Bollimora: Perting Phwy. Shop. Cre Longley Park: Hampshire-Langloy Shop. Cir. Rockville: 1600 Rockvilie Pike MASSAGHUSETTS
Boston:
Washington 5 t.
594 Washington St.
Braintreet South Shore Plaze
Brockton: Westgate Mal
Combridye: Fresh Pond Shooping Ave. Dedham: Dedham Mall, 300 VFW Phwy. Dorchester: Baytide Shop. Mall framingham: Shoppera' World Leominstor: Whiteacre Shop. Cir Medford: 3505 Shop. Plaza
Nodford: 3505 Mystic Yalley Plkwy. (Durrel Div.) Ouincy: 221 Quiney Ave. (Ourrell Div.)
Seugu: N. E. Shop. Crr.
704 Broadway (Durrell Div.) Springfield: Sppingfield Ploza Waltham: 922 Main 5 t. (Durrell Dlv.) West 5 pringfield: Century Shop. Ctr. Worcentel: Sincoin Plaze
Detroit:
Macomb Mall (Rosowille)
Uncoln Ctr. (Oat
inceln Park: 18 Seors tincoln Pk. Shop. Ger
Duluth: 29.31 EONE SOTA

Minneapolis:
1121 Nicolle! Ave.
140 a poche Plozo
\$1. Poul: 471 No. Snelling Ave.
Jockion: MISSISSIPPI
Jocksan: 3017 North State $\$ 1$. MISSOURI
Kansos Cify:
1234 Grand Ave.
Anfioch Shop. Cte.
5t. Joseph: East Hills Shop. Ctr.
1125 p
I 125 Pine St. (Walter Ashe Olv.)
Northland Shopping Center
10483 Si. Charles Rock Rd., St. Ann
Omahe: 3002 Dodge Sp
NEW HAMPSMIRE
Manchester: 1247 Elm St.
NEWnsauten: JERSET
Trenton: Is61 Hamilton Avewning Rd. NEW MEXICO
Albuquerque:
0315 Lomas Blyd., N,E.
4th and Copper N.W. NEW YORK
Albony: Colonle Shop. Ci., Colonie
Ainghompton: Vestal Shopping Plazo
Buffolo:
725 Main Street
Now Yontown Cyr. (Willioms villo)
Scheneclady: Shoporomo Ct Americos
Syracuse:
3057 Erio Blvd. East
Fairmount fair Ctr., 3675 W. Genesee St.
NORTM CAROLINA
Chorlotte: 1010 Central Ave.
Cincinnatl: 740 OHtO Sw 角ron Ctr.
Cleveland:
Sauthgate Cir. (Maple Mes.) Villoge Shops
Richmond Mall (2ichmond Hts.)
Lime: limand Mall (titchmond Mris.)
Willowick: Shoregote Shop. Ctr.

oklamoma

Gklahomo Ciry:
Maylair Shod. Cto
Tulter 2730 Sowih Harvard ORECOM
Portland: 1928 N.E. 42 nd St. PENNSTIVANIA
Greonabury: Greengate moll
Philodelphia:
2327 G
2327G Cortman Ave., Roosevelf Mail
1128 Wolnut S_{f}
irsbburaht Wolnut

309 So. Mills Village Crr.
Eowl Milh Shop. Cir.
Fiymouth Meeting: Plymouth Meating Mal MHODE ISLAND
Providence:

HENAESSER

Memphis:
1208 Southland Mall, Whitohaven
96 North Avolon
Eastogate Shapping Cir.
Froyser Plaza Shop. Cte.
1825 South 3rd Si. Cir.
Nathville: 100 Oaks Shop. Ctr.
Texas

Abilene: 2910 North Flist St_{1}.
Arlington: Collins of Park Row
Austin: Hencock Shopplag. Center
Brownsvilie: 847 S.E. Elizabeth 5t
Corpus Christl: 520 Everhort Rd
125 Wion Center
Plymauth Pork Shop. Ctr.
138 Morsh tane Plaza
156 Inwood Villoge
1407 Caso ilinao Plaza
1424 South Buckner Blvd.
Forth Worth:
3524 Denton Highway
2615 West 7th Si.
6303 Comp sowle Blvd.
138 Seminary South
79.49

8485 Kaly Freeway
822 Northline Mall
Bellotre, 4759 Bissonnef:
9417 Jensen Rd.
1407 Spencer Mgy. (So. Mouston)
tubbork: B-10 Caprocl Shap. Ctr.
Midands Sou
I Antonto:
Wonderland Shop. Crr.
$684 \mathrm{~S} . \mathrm{W}$. Mtlltary Drive Cr .
$71071 / 2$ Son Pedro Mrighw
Sherman: 1620 Pedra Mighway 75 North
Tyler: 108 Troup Mow C
Wacer K.Morl Shop.
Wacer K-Morl Shop. C
Soll Lake Ciry: Coffonwood Mall vinginia
Arlington: Porkington Shop. Cir
Hempron: Mercury Plazo
Norfolk: 4016 Granby St.
Virginide Beach: Pembrolie Mall Shop. Crr. WASHIMGTON
Seanie: Third Ave
837 NLE. Iloth St.
116 SW 148 th 5 st .

Julian M. Sienkiewicz, Editor

E Britain's Stone Age Mt. Palomar-Stonehenge -was built so that ancient sun worshippers could predict when their god would be eclipsed.

Stonehenge is a circular pattern of large stones in southern England that includes 56 in the outer ring. The stones are laid out in a scheme that obviously has meaning but there is no agreement as to what that is. The theory that Stonehenge served as astronomical observatory has been advanced by astronomers since early in this century, but archaeologists have not found the astronomical thinking convincing.

Now, however, Dr. Fred Hoyle, director of England's new Institute for Theoretical Astronomy at the University of Cambridge, has built a bridge between the two sciences, presenting evidence that eliminated many of the archaeologists" reasons for disagreement.

Archaeologists have generally attacked such theories on the grounds that Stone Age man lacked the sophistication to figure out the theoretical basis of such a complex observatory. Dr. Hoyle suggests that they didn't start with a theory, but with a pragmatic wooden model that they could change as its defects became obvious. Only when the observatory evolved and actually worked did they make it permanent.

Dr. Hoyle believes that the outer part of Stonehenge (the 56 circular markers) was built a little after 3000 B.C., and that the center structure for predicting solar and lunar eclipses was built several hundred years later. The great stone monoliths at the center of Stonehenge were put in place after a long, painstaking test by trial and error using wooden posts. The first wooden model tested could have resulted from the insight of a Stone Age genius equivalent to this century's Albert Einstein.

One of the most recent and ardent exponents of Stonehenge as an astronomical observatory is Dr. Gerald Hawkins of the Smithsonian Astrophysical Observatory in Cambridge, Mass. He also suggested that the large stone markers

with Locknut/screw adjusiling tealure

Speeds, simplifies setting of combination lock-nut/slotted screw adjustments on rheostats and similar controls used in a wide variety of electrical and electronic equipment.
Handle is drilled so you can run an 8 " screwdriver blade right through its center and down through the hollow nutdriver shaft.

Ideal for all-round production, maintenance, and service work, this new HSE- 1 Set contains eight interchangeable hollow nutdriver shafts in the most popular hex opening sizes from $3_{6}{ }^{\prime \prime}$ thru \% $\%_{6}^{\prime \prime}$

Really compact! Set is small enough, light enough to carry in your hip pocket. Sturdy, seethru, plastic carrying case doubles as a bench stand.

XCELItE, inc. - 64 bank St., orchard park, n. y. 14127
Send Bulletin N867 with information on HSC. 1 Hollow Shaft Nutd fiver Sets.
name
address
I cily
state \& zone

BRAND NEW SPRING \& SUMMER RADIO-TV ELECTRONICS CATALOG

YOUR BUYING GUIDE FOR: - Stereo \& Hi-Fi Systems \& Components - Tape Recorders - Elec tronic Parts, Tubes, Tools - Phonos \& Records - Ham Gear - Test Instruments \& Kits © Cam eras \& Film - PA - Citizens Band - Radio \& TV Sets - Musical Instruments
MAII. TODAY TO:
BURSTEIN-APPLEBEE Dept. RTVN, 1012 McGee, Kansas City, Mo. 64106
Name
Address
City
State \qquad Zip Code

POSITIVE FEEDBACK

were placed in a pattern for predicting solar and lunar eclipses, but thought the ancient men had worked out the proper positions theoretically. Dr. Hoyle suggested, rather, that the pattern of Stonehenge was worked out as a field experiment by very observant men who noted that every year the sun's positon in the sky was the same at the same time, such as mid-summer or mid-winter.
To measure such positions accurately, they would have had to use relatively long distances for sighting, such as a circle about 100 yards in diameter, which is the size of Stonehenge. Many of the stones, however, seem to be slightly out of place for accurate measurements of solar and lunar positions.

Dr. Hoyle has found that 19 of the 23 positions that seem to be out of line would be correct if they were lined up for observing not the actual date of mid-summer, but for two other observations: one during the week the sun approached its solstice and one as it moved back again. The average of these two observations would give a more accurate astronomical position than a single sighting at the time of solstice.

After several years of such observations the Einstein-of-his-time would have noticed that solar eclipses occurred only when the sun, earth and moon were lined up. The group then added the markers necessary to predict solar eclipses, first using wooden posts and then replacing them with the immovable stones so that later generations could not move them out of line.

What amazes this editor is the enormous energies expended by scientists using complex electronic computers and carbon dating techniques to discover what our illiterate forefathers were up to at Stonehenge 5000 years ago.

Mal, the Mooch. Just the other day my friend Hal popped into the house. I say popped because doors are to keep out flies, not people to his way of thinking. Or should I say, "not to keep Hal out." Anyway, I wasn't too concerned. I had only a few coins in my pocket and the refrigerator was locked. After I exchanged a pleasamtry with him, like "whatta you want?", we got down to business. Hal had to travel to the library and he was short the round trip carfare. Naturally, 1 posed my solution to the problem-walk! And he countered with his solution which would separate the coins I had from me.
Hal complained that he took the subway train several days ago and the round trip traveling time was only a half hour. Just yesterday he went to the library by train, but had to return on foot because some candy machine overpowered him. Riding away from and walking back home took an hour and a half for the trip. Therefore, I just couldn't ask him to walk both ways-it

MAIL ORDER

 SHOPPING MART

 SHOPPING MART
 UNUSUAL VALUES

A selection of products available by mail for readers of Radio-TV Experimenter All merchandise sold ori a money-back guarantee. Order Direct by Slock No. Send check or M.O.

3* ASTRONOMICAL TELESCOPE
See stors, moon, phases of Venus, planel. close up. 60 to 180 power-famous M1. folomor refiecting type. Aluminized a overcoated 3° diameter $\mathrm{f} / 10$ primary mirror, ventilated cell, Equipped with 60 X eyeplece and mounted $3 x$ finder scope, hordwood tripod. FREE "STAR CHART"; 272-poge "HANDBOOK OF HEAVENS": "HOW TO USE YOUR TELESCOPE"
Stock No. $85,050 \mathrm{HP}$
\$29.95 Ppd

ASTRONOMICAL TELESCOPE KITS

Grind your own mirror for powerful tole scope. Kit contains fine annealed pypax mirror blank, tool abrasives, diagonal mirror, and eyepiece lenses. You build instrument valued from $\$ 75.00$ up

Stock No.	Diam.	Thickness	Pre
70,003HP	$41 / 4$	3/4	\$8.00 Ppl
70,004 HP	6	$1 "$	12.95 Ppd.
70,005 HP	8 "	$13 /{ }^{\prime \prime}$	21.00 Ppd .
70,006HP	10°	$13 / 4{ }^{\prime \prime}$	34.25
70,007 HP	121/2	21/0	65.85

GIANT WEATHER GALLOONS
"Balls of fun" for kids, traffic stoppers for stores, terrific for amateur meteorologlats. Create a neighborhood sensation. Great backyard fun. Exciting beach aftraction. Amoteur meteorologists use to measure cloud heights, wind speed, and temp. Made of heavy duty neoprene. inflote with vacuum cleoner or outo olr hose, or locally availoble helium for high rise.
Stock Na. $60,568 \mathrm{HP}$. . . 8^{\prime}
52.00 Ppd .

Stock No. $60,632 \mathrm{HP} \ldots 16^{\prime} \ldots \$ 7.00 \mathrm{Ppd}$.

"FISH" WITM A MAGNET
Go treasure hunting an the bottomi fas cinating fun \& sometimes proflablel Tie a line to our $5-1 \mathrm{lb}$. Magnet-drop it overboard in bay, river, lake or oceon. Troll it along bottom-your "treasure" houl can be outboard motors, anchors, other metal valu. ables. $5-\mathrm{lb}$. Magnet is war surplus-Alnics \checkmark Type-Gov't cost $\$ 50$. Lifts over 150 lbs on land-much areater weights under wafer. Stock No, 70,571HP 512.50 Ppd

NICKEL-CADMIUM BATTERY BARGAINS Terrific value used government surplus. Oulck-charge, lithtwelsht 6.volt mickel-cedmitum battery. f-anp. hour espacliy. Almust unlimited life. Clasges in 1 hr . w/Edmund Charger Kit. Hundreds of uses. Few drops of Watel yearly for fuil malntenance. Mintinum of electrolyte-sealed to prevent loss. Deifers nearly 100% output at below freezins. Fiso vented 1.2 volt cell. $3 y^{\prime \prime} \times 2^{\prime \prime} \times 6^{\prime \prime}$
Stock No. $70,942 \mathrm{HP}$ (battory) $\$ 15.00 \mathrm{Pod}$. Stock No. 40.798 HP (1.2V. Celi) \$ 3.95 PDd . Stock No. $70,807 \mathrm{HP}$
(Charger KIt) …........... \$8.00 Ppd.

GIANI FREE CAJALOG
Completely new 1968 Catolog. I 48 pazz packed with nearly 4,000 unusual bargains. Exciting now categories. Many naw items. 100's of charts, illustrations. Many hord-to-get war surplus bargains. Enormous sele:tion of telescopes, microscopas, binoculars, magnets, magnifers, prisms, photo com. magnets, magniners, prisms, photo com. workshops, factories. Shoo by mail. No salesman will call. Simply check coupon or write for Cotalog "MP" to Edmund Scientific Ca. Barrington, N. 1. 08007

WORKING MODEL DIGITAL COMPUTER Solve problems, teach logic, play games with miniature version of giant electronic brains! Adds, subtracts, multiplies, shifts, camplements, carries, memorizes. Colored plastic parts easily assembled. $12^{\prime \prime} \times 3^{31 / 2^{\prime \prime}}$ x $43 / 4^{\prime \prime}$. Incl. step-by-step assembly diagroms, $32-\mathrm{p}$. instruction book covering operation, computer language (binary system) programming, problems $\& 15$ experiments.
Stock No, 70,683HP 55.98 Ppd.

IT'S HERE-8IG, NEW DIGICOMP II! If you' think DiGICOMP I way somethingwalt 'ill you use DIGICOMP III Louds of funt Terrific chatlenge! Actually works like electronic digital computer but needs no power. Adds, subtracts. multhphes. divides. memorizes. Ist mechanica! coraputer w/auto. switch actlon lst model desisned for prokramming. Speed reduced by factor of millIton to 1-you can wee what's happening. Demonatrates "new" insth. computer techniques. Stock No. $70,946 \mathrm{HP}$
\$16.00 Pud
MONEY BACK GUARANTEE MALLORDERTODAY! EDMUND SCIENTIFIC CO.

300 Edscorp Bldg.
Barrington, N. J. 08007
\square Please send free Catalog "HP

Name
|Address
City

OROER BY STOCK NUMBER - OPEN ACCOUNT TO RATED FIRMS : MONEY-BACK GUARANTEE

was unkind. Not meaning to be tricked by Hal I asked, "How long would it take you to walk both ways?"

To which Hal replied, "Come on Dad, you should be able to solve this one in your head using rate times time equals distance equations. But I bet you the cost of the carfare plus a ham sandwich for lunch you can't solve the problem using addition and subtraction only!"

Well now, this was a challenge which I took up. After all, with pencil and paper plus the free use of addition and subtraction processes, I am a match for the best Hal has to offer, or am I? So, if you want to discover how bright your editor really is, start loitering near your favorite newsstand, or better still, bivouac next to your

Last Issue's Puzzler

Come on now-do you really need an answer to the Who's for Dinner puzzler friend Hal posed last issue? OK, let's figure it out together. Draw a long table and place nine seats all on one side, numbering them in order from one through nine. Now, starting with seat one, begin counting to seven. At the seventh counted seat (which happens to be seat seven), draw an "X" through this seat, indicating the diner left for the kitchen (never to return!). Beginning with the next seat (seat eight), continue to count till you get to the end of the table. Now return to the first available seat at the low end of the table and continue the count until seven seats have been counted. Put an " X " on this seat. Keep this up, counting only those seats that are not "X"ed out until only one seat is left. This will be seat two. As you can guess by now, my friend Hal was in this seat. And what seat was I sitting in? Obviously, it turned out to be the seat that received the dinner check (there is always one loser in a crowd!).
mailbox and wait for your subscription copy the mailman brings. That's right, the solution is in the next issue.

Mare Ahoyl Just about everyone is swinging to electronics and to prove my point I am including a pic of Captain Whosit aboard the Good Ship Whatsit. A close inspection of the Captain reveals she is equipped with a Ray Jeff Marine Radio Telephone, Model 490 and Ray Jeff Depthfinder, Model 400. Priced at $\$ 299.95$ and $\$ 117.95$, respectively, one can readily recognize the low cost of these electronic safety accessories every boating bug should have on board before he takes to the

Careful investigation of the photo indicates enormous inroads have been made by electronics in to the marine field-look again!
water. Our hats are off to the Ray Jefferson, Division of Jetronics Industries, Inc., Main and Cotton Streets, Philadelphia, Pa. 19127 for keeping us informed and three cheers for the Ray Jeff company photographer. Just dig those polkie-dots!

Boy, Oh Boy! Well, it happened again. We goofed. In our October/November 1967 issue of Radio-TV Experimenter we made reference to a company whose initials were IRC. Naturally, perhaps, we assumed that the " R " stood for "Rectifier." But, alas, it stood for "Resistance."

The error appeared in the Ask Me Another column on page 40 . We have reprinted the entire question and answer below to straighten out the mess we created and we have also included some other useful information to show our hearts are really where they're supposed to be.

I have a bunch of transistors I salvaged from various radios. Where can I find out about their characteristics?

-E. M. L., Andalusia, Ala.
Write to IRC, Incorporated, Consumer and Distributor Products Division, 414 N. 13th Street, Philadelphia, Pa. 19108 and order a copy of their Transistor Reference Book (\$3.95). They also publish General Purpose/Signal Diode Reference Book ($\$ 3.95$) that's a good buy, too! Get both copies.

Now... 18 different professional-quality amplifiers, tuners \& preamps completely assembled... - solid state, printed circuits... priced lower than kits.

There are so many ways you will use these easy•to-install, printedcircuit assemblies; in hi-fi equipment, ham gear, P.A. and intercom systems, or as guitar and organ amplifiers. Employing the most advanced Complementarym Symmetry transistorized designs, these assemblies pravide the ultimate in economical circuitry for reliable audio applications from one watt to twenty. They have already become the design standard for a large group of audio equipment manufacturers, as well as a basic teaching tool in many educational institutions.
DVPE
TVPIPTION

For brochure containing complete technical data on àll 18 assemblies and for name of distributor nearest you, write: Amperex Electronic Corporation, Distributor Sales Dept. Hicksville, New York 11802.

I2 KIT-GIVING IDEAS FROM HEATH ...

For The Whole Family . . .

New Deluxe "227" Color TV

Exclusive Heathkit Self-Servicing Features. Like the famous Heathkit "295" and "180" color TV's, the new Heathkit "227" features a built-in dot generator plus full color photos and simple instructions so you can set-up, converge and maintain the best color pictures at all times. Add to this the detailed trouble-shooting charts in the manual, and you put an end to costly TV service calls for periodic picture convergence and minor repairs. No other brand of color TV has this money-saving selfservicing feature.
Advanced Features. Boasts new RCA Perma-Chrome pisture tube for 38% brighter pictures . . 227 sq . in. rectangular viewing area ... 24,000 v. regulated picture power . . . improved phosphors for brilliant, livelier colors dew improved low voltage power supply with boosted $\mathrm{B}+$ for best operation . . . automatic degaussing . . . exclusive Heath Magna-Shield to protect against stray magnesic fields and maintain color purity . . . ACC and AGC to reduce color fade and insure steady, flutter-free pictures under all conditions ...preassembled \& aligned if with 3 stages instead of the usual 2... preassembled \& aligned 2 -speed transisior UHF tuner . . . deluxe VHF turret tuner with "memory" fine tuning ... 300 \& 75 ohm VHF antenna inputs ... 2 wo hl-fi sound outputs ... $4^{\circ \prime} \times 6^{\prime \prime} 8$ ohm speaker ... choice of installation - wall. custom or optional Heath factory assembled cabinets. Build in 25 hours.
Kit GR-227, (everything except cabinet)... $\$ 42 \mathrm{dn}$. as low as \$25 mo. . . 114 lbs... $\$ 419.95$ GRA-227-1, Walnut cabinet. . . no money dn., $\$ 6$ mo........ $\$ 59.95$ GRA-227-2, Mediterranean Oak cabinet (shown above) . no money dn., $\$ 10$.mo..
$\$ 94.50$

Kit GR-295
$\$ 479.95$
(less cabinet)
$\$ 42 \mathrm{mo}$.

Deluxe Heathkit "295" Color TV
Color TV's largest picture . . . 295 sq. in. viewing area. Same features and built-in servicing facilities as new GR-227. Universal main control panel for versatile in-wal! installation. $6^{\circ} \times 9^{\prime \prime}$ speaker.
Mit GR-295, (everything except cabinet), 131 lbs .
$\$ 48 \mathrm{dn}$. 542 mo .
$\$ 479.95$
GRA-295-1, Walnut cabinei (shown above), 35 Ibs..
no money dn., $\$ 7 \mathrm{mo}$.
Other cabinets from $\$ 94.50$

Kit T0. 67 \$995
(including bench) s200 dn., as low sis $\$ 29$ mo.

Heathkit ${ }^{*}$ /Thomas

 "Paramount" Theatre OrganSave Up To $\$ 500$ I Build in $80-100$ hours. All Thomas factory-made parts 15 manual, 4 pedal voices; instant-play Color-Glo; all-transistor circult: 200 watts peak power: 2 -speed rolating Leslie plus main speaker system with two $12^{\prime \prime}$ speakers; 44-note keyboards; horseshoe console with stop tablets; 28 -note chimes; 13 -note bass pedals; repeat \& attack percussion; reverb; headset outle:; assembled walnut finish hardwood eabinet \& bench; and more. 265 lbs .7 ", $331 / 2 \mathrm{rpm}$ demonstration record 50 .

$\$ 419.95$ (Iests5 cobinet)

Kit GAA-27
\$19.95

New Remote Control

 For Heathkit Color 'TV Now change channels and turn your Heathkit color TV off and on from the comfort of your armichair with this new remote control kit. Use with Heathkit GR-227, GR- 295 and GR-1 80 color TV's. Includes 20° cable.

Deluxe Heathkit "180" Color TV
Same high performance features and exclusive self-servicing facilities as new GR- 227 (above) except for 180 sq . in. viewing area.
Kit GR-180, (everything except cabinet), 102 Ibs. .
\$35 dn. $\$ 30 \mathrm{mo}$.
$\$ 349.95$
GRS-180-5, table model cabinet \& mobile can (shown
above). . 57 lbs. . . .no money dn., $\$ 5$ mo... $\$ 39.95$
Other cabinets from $\$ 24.95$

America's Lowest Cost Solid-State Organ

Kis GD. 325 B
\$394.90
$\$ 40 \mathrm{dn} . \mathrm{I} \$ 34 \mathrm{mo}$

Save $\mathbf{U p}_{\mathrm{p}}$ To $\mathbf{\$ 2 0 5}$! Instantplay Color.Clo; 10 voices: 13 -note bass pedals; repeat percussion: 37-note keyboards; 75 -watt peak power ; vibrato: assembled walnut cabinet \& bench. 172 lbs. $7 \% 33 \% \mathrm{rpm}$ demonstration record 50 c .

Exclusive Band Box Percussion

Automatically or manually adds 10 percussion voices to any Heathkit/ Thomas organ. Build \& install in 12 hours.
Kit TOA-67-1, no money dn., $\$ 14$ mo.. $\$ 145.00$

Exclusive Playmate Rhythm Maker

Adds 15 fascinating rhythms to any Heathkit/Thomas Organ. Requires Band Box percussion (above) for operation.
Kit TOA-67-5, no money dn., $\$ 18$ mo.

USE COUPON TO ORDER NOW!

NEW! VOX "Jaguar"

Transistor Combo Organ By Heathkit

Save Up To $\$ 150$ on the world's most popular combo organ with this new Heathik version. Features the most distinctive sound of any combo organ. Has a special bass output that gives a brilliant stereo bass effect when played through a separate or multi-channel ampllfier, 4 complete octaves, vibrato, percussive effects and reversible bass keys. Includes hand crafied orange and black cabinet, fully plated heavy-duty stand, expression pedal and waterproof carrying cover and case for stand. Requires a bass or combo amplificr like Heathkit TA-17 (opposite page).

$$
\text { Kit TO.68, } 80 \text { lbs... . } \$ 35 \text { dn., } \$ 30 \text { mo.................. . . } \$ 349.95
$$

NEW! Deluxe Solid-State Combo
Amplifier \& Speaker System...
Choose Kit Or Factory Assembled

Amplifier \$175
517 mo . TAW-17 \$275)

Speaker Systam
Kit TA.17.1 $\$ 120$ 511 mo . (Assembled TAW-17.1 8150)

Speclal
Combination Offer
Ampllfier \& Two
Speaker Systems
Save $\$ 20$
Kis TAS-17-2
$\$ 395$
$\$ 30 \mathrm{dn}$.
34 mo
(Assembled
TAW-17-2 $\$ 545$)

All the "bis sound" features every combo wants . . tremolo, built-in "fuzz", brightness, reverb, separate bass and treble boost and more. Delivers a shattering 120 watts E1A music power (240 watts peak power) through two TA-17-1 speakers or 90 watts through one TA-17-1 speaker. Features 3 independent input channels, each with two inputs. Handles lead or bass guitars, combo organ, accordion, singer's mike, or even a record changer. All front panel controls keep you in full command of all the action.
Speaker system features two 12^{*} woofers, special horn driver and matching black vinyl-covered wood cabinet with casters \& handles for casy mobility.

Klt IM-17
$\$ 19.95$

NEW!

Lowest Cost Solid-State Stereo Receiver

Features wide $18.60,000 \mathrm{~Hz}$ response (G) $\pm 1 \mathrm{db}$ at full 5 watts RMS power per channel... 14 watts music power ... inputs for phono and auxiliary . . . automatic sterco indicator ... outputs fo: 4 thru 16 ohm speakers . . . adjustable phase for best sterco . . . flywheel tuning . . . and compact $9 \%^{\circ}$ D. $\times 2 \%^{\circ} \mathrm{H} . \times 111 / \mathrm{m}^{\prime \prime} \mathrm{W}$. size. 12 tbs . Optional factory assembled cabinets (walnut $\$ 7.95$, beige metal $\$ 3.50$).
Kit AR-17, (less cab.) $12 \mathrm{lbs} . .$. no money dn., $58 \mathrm{mo} ., \$ 72.95$
Kit AR-27, 7-Watt FM Mono Only Receiver (less cab.)
9 lbs. . . . no money dn., $\$ 5$ mo.
(less cabinet)

HEATH COMPANY, Dept. 19-2

Benton Harbor, Michigan 49022
In Canada, Daystrom Lidd.
\square Enclosed is \$ \qquad including shlpping.
Please send model (s) \qquadhkit Catalos.
\square Please send Credit Application
Name
Address
City
State
Iip

NEW!
Solid-State

Portable

Volt-Ohm-Meter

So Handy, So Low Cost we call it "every man"s" meter. Just right for homeowners, hobbyists. boatowners, CBer's. hams . . . it's even sophisticated enough for radio \& TV servicing! Features 12 ranges... 4 AC \& 4 DC volt ranges, 4 ohm ranges; It megohm input on DC, I megohm input of AC; $41 / 2^{\prime \prime} 200$ uA meter; battery power; rugged polypropylene case and more. Easy 3 or 4 hour kit assembly. Ideal gift for any man! 4 lbs.

FREE 1968

CATALOGI

Now with more kits, more calor. Fully describes these along with over 300 kits for sterec $/ \mathrm{h}-1 \mathrm{ll}_{\text {? }}$, color IV, electronic organs, elec. tric quitar \& amplifiet, amateur radio, marine. educational, ç8, home habby. Mait coupon on Harbor, Mienigan 19022

Now OFF PRESS BETTER THAN EVER Over 500 Pages

Stereo hi.fi - cilizens Band - Ham Gear - Tape Recorders Test EquiD. ment - TV and Radio Tubes and Parts Cameras Auto Accessories - Musical Instruments - Toois - Books

Featuring Everything in Electronics for - HOME - INDUSTRY - LABORATORY from the "World's Hi-Fi \& Electronics Center"

```
LAFAYETTE Radio ELECTRONICS
    Dept. BA-B, P.O. Box 10
Syosset, L.I., N.Y. 11791
```

Send me the FREE 1968 LAFAYETTE Catalog 680 EXB-8
Name
Address

City
\qquad
zip
(Please Give Your Zip Code No.)

CB

RIGS \&

 RIGMAROLE

- Cape Kennedy Rides Again. We recently saw a new CB rig which is just about guaranteed to bring a lump to CBers' throats. Fine business with your super-miniaturized rigs which can place so much talk power in a pint-sized cabinet -that's a popular trend in CB gear of late. What about Tram Corporation's (Lower Bay Road, Box 187, Winnisquam, N.H. 03289) new Tram Titan II?

Going their very own way, Tram has brought out a really BIG piece of CB ecstasy. Nothing miniature for this baby, it's a large, impressive, solid, massive, heavy, and sharp hunk of communications equipment intended for base station use. There's not a whisper of doubt as to what this thing is sitting there on your deskyou're either one of the world's most "in" CBers

One thing about the folks at Tram, they know how to show off their Titan II CB rig.

NOWA low cost Crystal for the Experimenter
 International
 - LOW COST
 - MINIMUM DELIVERY TIME
 $3,000 \mathrm{KHz}$ to $60,000 \mathrm{KHz}$

SPECIFICATIONS: International Type "EX" Crystal is available from 3,000 KHz to $60,000 \mathrm{KHz}$. The "EX" Crystal is supplied only in the HC-6/U holder. Calibration is $\pm .02 \%$ when operated in International OX circuit or equivalent.
CONDITIONS OF SALE: AII "EX" Crystals are sold on a cash basis, $\$ 3.75$ each. Shipping and postage (inside U.S. and Canada only) will be prepaid by International. Crystals are guaranteed to operate only in the OX circuit or its equivalent.

COMPLETE OX OSCILLATOR KITS

Everything you need to build your own oscillator. Two kits available. "OX-L" kit 3,000 to $19,999 \mathrm{kHz}$. "OX-H" kit 20,000 to $60,000 \mathrm{KHz}$. Specify "OX-L" or "OX$\mathrm{H}^{\prime \prime}$ when ordering.
 Postage Pald

MINIMUM DELIVERY TIME We guarantee fast processing of your order. Use special EX order card to speed delivery. You may order direct from ad. We will send you a supply of cards for future orders.

ORDERING INSTRUCTIONS

(1) Use one order card for each frequency. Fill out both sides of card.
(2) Enclose money order with order.
(3) Sold only under the conditions specified herein.

CRYSTAL MFG. CO., INC.
YO NO. LEE OKLA. CITY, OKLA. 73102
fill in coupon for a FREE One Year Subscripe Packed Catafog-Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Tools, Stereo Amps, Tuners, CB, and other Values, Credif plan available.
NAME \qquad
ADDRESS
CITY \qquad STATE
GIVE ZIP CODE
If you hove o friend interestad in olectronics sond his name and address for a FREE subscription also.

OLSON ELECTRONICS

INCORPORATED
809 S. Forge Street Akron, Ohio 44308

FIRST WITH

* Digital Integrated Circuits
* 4 Crystal-Controlled Oscillators
* Battery \& AC Operation Standard

The Now Pace-Setting CONAR Model 680 COLOR CENERATOR K!T \$83.50

WIRED \$114.50
Until now, no commercialiy available color generator has offered so many quality features in a single instrument at such a low price. Only the CONAR SIGNAL GENERATOR has all these features at any price: exclusive digital integrated circuits; exclusive 4 cryatal-controlled oscillators; exclusive AC or battery operation standard; completely solid state; color amplitude control; color phase adjustment; regulated power supply; stability control; TV station sync and blanking pulees; nine patterns; red, blue and green gun killers; compact; lightweight; portable.
For details write Dept. BP8C

CONAR instruments

DIVISION OF NATIONAL RADIO INSTITUTE 3939 Wisconsin Ave., Washington, D.C. 20016

CB RIGS \& RIGMAROLE

or you're a Cape Kennedy missile control center.
The Tram Titan II is actually 2 complete transceivers in one cabinet, a standard ampljtude modulated rig plus a rig which offers double-sideband suppressed carrier unit. The receiver can inhale amplitude modulated signals, single or double sideband (reduced or suppressed carrier).

Switching back and forth from one form of modulation to another means the flick of a switch. Sideband transmission offers greatly extended transmission range over amplitude modulation, in addition to also insuring some degree of privacy in your communications (the only people who can copy sideband signals are those equipped with receiving gear intended for this mode of transmission).

The receiver features a mechanical filter which cuts interfering signals down to virtually nothing. A meter on the front panel measures both the transmitter and antenna systems, showing forward power into the self-contained dummy load, the power to the antenna, and also the SWR.

TV interference is clipped out by a built-in filter. The chassis is designed for easy probing around inside (take a picnic lunch, it's a big place). As you can see, it's really spectacular!

Getting down to the nitty-gritty, the Tram Titan II will cost you $\$ 482$ (you expected maybe $\$ 19.95$?). It comes ready to go on all 23 CB channels and if it doesn't make you the most popular guy on the band in your area then maybe you've got a personality problem.

- Shure Is Nearl Pardon the pun, but we just couldn't resist it. In fact, Shure Brothers, Inc. (222 Hartrey Avenue, Evanston, III.) did resist it-their new Model 444T variable output-mike, we mean.

They incorporated into the design of this base station mike a 2 -transistor mike preamp which

CB RIGS \& RIGMAROLE

will boost the modulation output of any CB rig which is slightly anemic in this department. The preamp runs from a self-contained battery with 300 hours of life. The height of the mike may also be adjusted to take into account the height of your operating desk and the length of your neck (no Charlie, it doesn't limit the length of your transmissions too).

So if you are being "shouted down" by others on your channel with newer and flashier rigs having more "talk power" than your old warhorse, try a Shure 444 T and snarl back with a voice as loud as any on the band.

- More Walkie, More Talkies How about a 3 -channel walkie-talkic running a hefty $1 / 2$ watt for, would you believe, $\$ 32.95$? Well we aren't joshin' because Lafayette Radio, 111 Jericho Turnpike, Syosset, L.I., N.Y. 11791, really has one. It's their HA-305 and includes among its features: 14 transistors, 1 diode, 1 varistor, selective superhet receiver, variable squelch, 1

uV sensitivity, range boost modulation, provisions for tone call alert and $117-\mathrm{VAC}$ operation with optional battery eliminator.

Now you will say that it is not enough for your investment? They've also included a battery condition meter, a set of batteries, a carrying case, a set of channel 9 crystals, and a CB license form (whew!). Looks like the only thing you don'r get with this is shares of Lafayette stock! (You can also ask for their all-new 1968 catalog that's packed with great CB buys and many other goodies.)

HERE'S YOUR ONE-SOURCE FOR CERAMIC CAPACITORS AND SEMICONDUCTORS

when you buy Components from

ERIE'S ELECTRONIC COMPONENTS station

NOW AT YOUR FAVORITE DISTRIBUTOR

> YOUR COMPONENTS ARE NEATLY PACKAGED WITH COMPLETE DESCRIPTION for EASY USE!

112 Popular Components ...
56 CERAMIC CAPACITORS
28 SEMICONDUCTORS
18 VARIABLE CAPACITORS
10 MYLAR CAPACITORS
*On purchase of only $\$ 2.50$

FOR FREE $\$.50$ Coupon and

 6-Page Components Catalog Send to:ERIE TECHNOLOGICAL PRODUCTS, INC.
Erie Distributor Sales Erie Distributor Sales
644 West 12 th Street - Erie, Pa. 16501
please send catalog and price data... today
NAME
COMPANY \qquad
ADDRESS \qquad
CITY \qquad STATE

SEND FOR OUR 1968 CATALOG OF

PRECISION QUARTZ CRYSTALS AND ELECTRONICS

SENTRY MANUFACTURING COMPANY 1634 Linwood Boulevard-Ohlahoma City, Ohlahoma 73106 PHONE: 406-232-M43-TELEX: 071-361-TWXH פ10-63103176

Amateur Juvenile

I am not old enough to have a CB license. But I have heard that it does not matter what your age is for ham license. Is this true?
—D. L. S., Brookfield, Mo.
Wish I had your problem. Yes, it's true. If you can pass the test. Start studying.

Great Mind's Quick-Think

After reading the tornado article in your JuneJuly issue of Radio-TV Experimenter, I thought up a tornado warning device. Why not use a fluid type barometer with a photo-cell to detect the sharp drop in barometric pressure which occurs when a tornado approaches? The photo-cell can switch on a siren, buzzer or other alarm to warn people of the approach of a tornado.

-B. O., Bronx, N. Y.

A call to the U.S. Weather Bureau reveals that the drop in barometric pressure occurs seconds before a tornado hits so don't bother patenting the idea.

Attention Megawatt CBers

I would like to know if the power of a CB walkie-talkie transmitter can be boosted from 0.2 watts to 1.0 watt. If not, why not?
-H. M., Northampton, Pa.
'Cause I'll bet you won't spend a couple of hundred bucks having a lab certify that the modification meets FCC specs.

Get With It You Guys

I enjoy your magazine and eagerly await its arrival here. I find it of much greater interest than its English counterparts. My problem is that I have trouble getting components. I have
written to both Allied and Lafayette asking for their catalogs but have received no reply. Could you possibly give me the name and address of a distributor in the United States who would take the trouble to ship parts outside of the United States? I am able to send dollars.
-l. McK., Kiswe, Zambia
Allied, Lafayette, Radio Shack and anybody else interested in selling equipment to this gentleman, send your catalogs to Mr. I. McKenzie, 173 Philip St., Nkana East, Kitwe, Zambia.

Match a Mis

I have a transistorized amplifier and I'm plagued with a minimum impedance problem common to these units. Is there any way to connect more than two speakers to the unit, without dropping the impedance below 4 ohms?
-P. P., Castro Valley, Calif.
Sure, connect the speakers in series or seriesparallel as shown.

3 in Series

4 IN SERIES - PARALLEL

Searching, Ever Searching

I sent you a question over four years ago and I stlll haven't seen the answer.

> -J. R. A., Big Sur, Calif.

Sorry about that-what's the question?

For the Price of a Penlight Cell

I have a flash camera that uses AG-1(B) flashbulbs and two penlight cells. I would like to build an AC adaptor so 1 can take flash pictures with the unit using house current.
-R. T., Daytona Beach, Fla.
Cheapskate! The diagram shows an AC adaptor that could be used with your flash unit. It'll even recharge the batteries if they're left in the circuit, but at the cost of penlight vells, is it worth it?

Watch Those High-Powered Cartridges

In my hi-fi system, I have two turntables feeding into one input of my amplifier. I have been told that I am overloading the input and this will

VHF RECEIVER

AM/FM—MULTI-BAND

HIGH SENSITIVITY-SELF CONTAINED Hear police, fire, aircraft, amateur CB, etc. signals. Covers 26 to 54 and 88 to 174 mc in eight callbrated bands. Plus a ninth adjustable band for 15 or 20 meter SW BC listening. Five tubes AC power supply with silicon rectifier.
Write for catalogue of complete lline of converters, recelvers and

KUHN ELECTRONICS

1801 Mills Ave. NC.

World Famed BREVETTATA TEAR GAS PISTOL

Appearance of this Ane tear
Oas weapon is oas weapon Is similar to real work it is ideal for pooplo who and requlre protectlon. Men olve this oun to wives and daughters por nlght securlity. Many Industrial applleations. Shooting of gun stods ageres: sor without permanently inlur-
ing him. Neither permit nor license is needed
but it is not sold to minors. It Ares six car-
tridgos without reloadíne. Each gun comes
with six tear pas sholls and six blanks for
practice and Is shippod prepaid. Gun unlt
prices include, 12 shells and all shippling costs.
I Gun-unit at
2 Gun-units of $\$ 22.86$
.....

(\$11.43 ea.)
Gun-units of $\$ 29.94$
($\$ 9.98 \mathrm{ea}$.)
4 Gun-units af $\$ 35.16$
($\$ 8.79$ ea.)
Extra boxes of ton tear gas shells at $\$ 1.50$ Der box (prepaid with
gun orders). Extra boxes of blanks at $\$ 1.25$ por box

> UNITED SAFETY SUPPLY CO. 310 West 9th Street
> Kansas CIty $12 R T$, Missouri 64105

When Answering Advertisements Say You Saw It In RADID-TV EXPERIMENTER

SNOOPERSCOPE IR TUBE

Used by the Miltary for night viewing. Permits observation In the dark of night. Unused British IR Image Converter Tube with plans for construction of night viewer only $\$ 4.60$ postpaid.
84 page catalog of hundreds of unusual opti-electronio
MISNA

MESHNA - 19 ALLERTON STREET - LYNN, MASS. 01901

THOUSANDS OF BARGAINS TOP VALUES IN ELECTRONIC

Transistors, Modules, C. B., Speaker, Stereo, Hi-Fi, Photo Cells and Thousands of Other Electronic Ports. Send for FREE Catalogue
ELECTRONIC DISTRIBUTORS INC.

EDI

Dept. TA-2, 4900 Elston Chicago, III, 60630 d rush catalogue
Name Addrese
city
state. Zip Code. ...
damage the amplifier. Please tell me if this is so. -J. G. R., Quaker Hill, Conn. Only if the cartridges are 100 -watt jobs.

Divide and Conquer

What is the trick used by organ manufacturers to get different notes? They surely don't have 88 different oscillators. Could you publish a simplified schematic?
-O. B., Council Grove, Kan.
Those tricky organ manufacturers use a bank of 12 tone oscillators followed by frequency dividers. The diagram will give you a quick idea of how it's done.
 outdoor antenna.
way, unless you're a TV expert, keep your cotton picking fingers out of that set. There are high voltages present and you might misadjust things. To improve your TV reception, use an

Technicolor Hope

I thought that your article on how to convert black and white TV to color was very interesting. However, I would like to know if there's any way 10 get color in front of the CRT without using the color wheel and still using the monochrome CRT.
-B. K., Cedar Falls, Lowa
Do it and you won't have to depend on Social Security.

BCB Blues

When 1 tune past 20 kHz on my shortwave set, all I get is AM band signals-distorted. I get no

Come Again?

You sure have a boring column. -W. K., Southhampton, U. K.

Thanks.

Immovable Audio

Can you give me a circuit for a very stable fixed frequency audio oscillator?

- N. G., Washington, D. C.

Be glad to: The schematic shows an oscillator employing a Twintron electro-mechanical resonator and a Darlington amplifier. You can get a fixed-tuned or tunable Twintron ($300-3000 \mathrm{~Hz}$, $100-700 \mathrm{~Hz}$ or $700-7000 \mathrm{~Hz}$); they are available from H B Engineering Corp., 1101 Ripley Street, Silver Spring, Maryland. The transistor should be available at any GE transistor distributor.

Sure is Interesting

Will I get improved TV reception if I place the TV signal booster between my portable TV's built-in anterna and the TV set's input circuit? You sure have an interesting magazine.
E. M. L. Andalusia, Ala. It's sure interesting that you think so. By the
sign of life in the 10,11 and 15 meter bands except these $B C B$ stations. What can I do?
-G. C., Fords, N. J.
Punt!

Glutton for Punishment

For fun and games I built a double-conversion FM tuner using tubes. It has a cascode front end, four IF stages, a second convertor, one RC low IF stage and two limiters. The IF's are 10.7 MHz and 200 kHz . Can you give me a circuit for a cycle counting FM detector?
-R. F., Victoria, B. C.
Boy, will you need a wideband IF amp. Since the FM signal deviates $\pm 75 \mathrm{kHZ}$, the low IF will swing from 125 to 275 kHz . You might try the detector circuit shown in the diagram. Ex-
(Continued on page 37)

Continued from page 34

periment with various values of resistors and capacitors until you get the best results. Good luck Charlie.

CYCLE COUNTING DETECTOR

Tape's Here to Stay

Could you supply me with the name of a companty or companies which manufacture and sell home record cutters?
-G. J. D., Toledo, Ohio
Nope. Only pro jobs available nowadays.

Unseen Commercials?

How can I receive just the sound from TV stations?
-S. S., South Bend, Ind.
Get a hold of a TV tuner somewhere and connect its output to the antenna terminals of a 30 50 MHz tunable FM communications receiver. Apply filament and $\mathrm{B}+$ power to the tuner and set the receiver to the output IF of the tuner (around 45 MHz). Hook an antenna to the tuner, switch it to an active channel and you should be in business-but why bother?

Fringe FM

What can I do to improve the reception of my FM auto radio? 7 am using a 31 -inch fiberglass antenna. I don't live in a fringe area.
-K. C., Leechburg, Pa.
Judging from an atlas, you are in a fringe area for picking up Pittsburgh FM stations with a car antenna. There are intervening hills and vegetation which have an adverse effect on VHF (FM-band) reception.

Canned Ham?

What company puts out a recorded general class amateur radio operator license course?

> -J. C., Pea, Mo.

Don't know of any. Sounds like a great idea. Someone should do it. There are several code courses listed in electronics mail order catalogs. Pick up a headset at the same time and spare the family from de-dah noises.

Shocking!

Do you have any information on methods to combat excessive static electricity for an Qperator of buffing and polishing machines. where the product is cleaned in gasoline? Is static electricity conductible by "wiring" the operator back to the press? Is this safe-in the event something should happen to the machine?
-M. M. A., Fayenteville, Ark.
In plants where static is a problem, special conductive shoes are worn by personnel who stand on grounded metal plates. For considerable information on static, write to National Fire Protection Association, 60 Battery March St., Boston 10, Mass. They have a publication, identified as $77-\mathrm{M}$, which is supposed to cover the subject quite well.

Lots a Space?

I have a National 188 receiver and would like to put an antenna in my window instead of putting out 100 feet of wire outside.
-P. T., Fargo, N. D.
You'll get much better results with an outside antenna. You should have plenty of room for one out there in North Dakota. Window antennas are what a New York cliff-dweller must put up with. But why you?

Shape Up, Men!

You can save heaps of time and money with the Wireformer. It bends, it straightens, it cuts -with this simple tool you can make your own peg-board hooks, shelfhangers, shelves, clamps, handles, etc. Wireformer works with any size wire up to $5 / 32-\mathrm{in}$. diameter in any metal, including coat hangers. Twill bend in any shape, from a closed eye $3 / 16$-in. in diameter to a large perfect circle as large as the length of the wire permits. All parts are case-hardened, coldrolled steel and the handle is plastic. Fits in your pocket. You can get the Wireformer, complete with illustrated instructions for precision forming and a special adapter for small size wire, direct from the manufacturer-Vinkemulder Mfg. Co., 917 Princeton Blvd., Grand Rapids, Mich. 49506-for a mere $\$ 3.98$.

Vinkemulder Wireformer

Rechargeable Human Toaster

The Porto-Warmer from Esdee Industries will keep you snug and warm by means of a pocketsize power pack connected to thin warming pads. Back from the game or the hunt, you simply connect the power pack to the 117 VAC recharger. The 6 -volt power supply pro-

Esdee Industries Porto-Warmer
duced over 1200 total hours of heating, at 6 hours use per charge. The heating pads are waterproof. The Porto-Warmer, complete with power pack, recharger, heating pads, and shoulder strap is available for $\$ 39.95$ postpaid from Esdee Industries, 9219 W. Pico Blvd., Los Angeles, Calif. 90035.

Bingo Bango Bongos

New kit in the EICOCRAFT line is the Model EC-1600 Solid-State Bongos, \$7.95, consisting of battery-operated, transistorized oscillators plus preamplifier. When touch plates are tapped the percussive sounds of bongos, tomtoms, etc., are electronically reproduced (can attach to any guitar amplifier, hi-fi system). Two other new EICOCRAFT kits are the

EICO's Eicocraft Trukits

Model EC-1400 FM Radio, \$9.95, and Model EC-1500 AM Radio, $\$ 7.95$. Both operate on respective broadcast bands, are battery-operated and tunable, and are employable as personal radios (earphones supplied), tuners, or wireless intercoms. No technical knowledge is needed. Step-by-step instructions are in each package and only a soldering iron and diagonal cutters are necessary for assembly. At distributors or write to EICO, 283 Malta St., Brooklyn, N.Y. 11207.

Set Your Head for Hi-Fi

Pioneer Electronics has brought out an im-pressive-looking headset in an elegant black Scotch-grain, satin-lined box for the low tab of $\$ 29.95$. Model SE-30 is stereo, and has washable, comfortably thick ear cushions. Highly-styled in black, white, and chrome, the set has a frequency response of 20 to 20,000 Hz . Obtainable from local Pioneer dealers, or write: Pioneer Electronics, 140 Smith St., Farmingdale, N.Y. 11735.

Pioneer Model SE-30 Stereo Headset

The State? Solid! The Sound? Stereo!

The 1968 Knight-Kit Model KG-980 50watt stereo-FM receiver is designed to include top features in the state of the art at a massmarket price, $\$ 149.95$. The KG-980 uses allsilicon transistors and has transformerless driver and output circuits, so there is virtually no hum

Knight-kit Model KG-980 Stereo-FM Receiver

NAVY

TRANS. A WECEIVER-CryBtal controlled, ean be Mc. Vole (A3) communication only; output of Trans. is 0.2 , watis a matiafuetory communleation between unlta over average terratn should be mialntalned approx. up to one (1) mile. With Tuben: 1 IRS. $1 / 155,2 / 1$ T4. 4 MA: 1.5 VDC 225 MA I/Receiver. 87.5 VDC i.5 MA: 135 VDC 10 MA : 1.5 VDC 225 MA \& -6 VDC 30 MA f/Trans. It waterproof plastic case w/space for hatt. or power supply, Telescoping antenna 8 ft, Has upec. FToadiny coll. Complete w tubes, antenna, 2 cryniats phone, cunvas cocer of reg. headphones. carbon micro 214^{*} : Wh.: 8 lbs.............................. 9.95 "DAV"* MODEL-SAme as above, but with direction finding $\$ 12.95$ VIBHATOR Power Supply $1 / \mathrm{MAB}$ \& DAV. Operates from B VDC A
 Dry Charge Battery N.T-S $/ /$ above power supply. 8 VDC 4 A... $\$ 3.95$ Price F.O.B. Lima. O.-25\% Depostt on COD"R-Address Dept. 38

BIG FREE CATALOO- Write for your FREE copy nowi

FAM: $\because A \cdot 10$ BALEB
 1016 E. EUREKA - Box 1105 - LIMA, OHIO • 45802

How to Write a

Classified Ad That Pulls

Deluxe 48 page booklet-only $\$ 1$ per copy. And, with the booklet, you get a $\$ 2$ credit towards your payment of your classified ad in Radio-TV Experimenter. Send $\$ 1$ now to Radio-TV Experimenter, 505 Park Avenue, New York, New York 10022.

TRANSISTORIZED CONVERTER KITS $\$ 5.00$ EACH

Three kits available. Marine $2-3 \mathrm{mc}$, police \& fire, high band $100-200 \mathrm{mc}$, low band 26.60 mc . 1 me tuning on car radio. Full instructions.

```
ANY KIT $5.00 pp. WIRED $15.00 pp.
FRED MESHNA, NO, READING, MASS. 01864
```


Keep

up to date with SCIENCE \& MECHANICS
Science \& Mechanicsthe only magazine that keeps you right up to date on developments in space technology, weapons, automobiles, medicine, boats, planes, tools, new products, and exciting world events.
Keep up to date. Make sure of your home dellvered copy by returning the coupon today.

or distortion. Frequency response is within 1 dB from 18 to $30,000 \mathrm{~Hz}$. The FM tuner has a 4 -stage front end, including two RF stages. Circuit automatically switches to stereo and an indicator light goes on when a stereo station is tuned. The critical FM front end and IF sections are factory-assembled and aligned. Other features: precision tuning meter, speaker muting switch, tape monitor, front-panel stereo headphone jack, and positive-action rocker-type switches. Inputs include magnetic phono, tape monitor, and auxiliary (ceramic phono). At all Allied distributors, or you may request Cata\log No. 270 for more dope on the KG-980. Allied Radio Corp., 100 N. Western Ave., Chicago, IIl. 60680.

Be Scotch With Your Stickum

"Scotch" brand electrical tape now comes in a fully-enclosed plastic tape dispenser. Designed for electrical, household and marine applications, the rigid plastic dispenser is reusable and gives permanent dust and edge protection to the enclosed roll of tape. The dispenser has a flat bottom so it won't roll and a recessed sharptooth cutting bar. Each dispenser holds 60 feet of $3 / 4$-in. "Scotch" black vinyl plastic electrical tape No. 33. At dealers everywhere for $\$ 1.49$; quantity lots available in 12 -roll displays and in 24 and 48 display units. For further info write Dept. E17-39, 3M Co., 3M Center, St. Paul, Minn. 55101.

"Scotch" No. 33 Electrical Tape

Thrown for a Looper

A very handy tool for the hobbyist is the LID L' LOOPER, which forms a loop on jar lids, allowing them to be hung on a wall. Large enough to slide onto a pegboard hook or 8-penny finishing nail, the loop is easily formed by placing the lid between the handles of the LOOPER and squeezing. Such a loop is capable of supporting 50 pounds. At the quite low price of $\$ 2.50$, you get the LID L' LOOPER by writing to Dahl Enterprises, Box 708, Hawthorne, Calif. 90250.

Dahl's L" Looper in action (left) Results are shown at right!

Be a Square and Make Waves

At the very reasonable price of $\$ 75.00$, the Knight-kit Model KG-688 Sine/Square Wave Generator will provide a signal source for all kinds of electronic equipment: audio amplifiers, transducers, sonar and supersonic apparatus, servos, video frequency circuits and low radiofrequency equipment. Sine wave frequency range from 20 Hz to 20 MHz includes the entire AM broadcast band. The square wave fre-

Knight-kit Model KG-688 Sine/Square Wave Generator quency range is from 20 Hz to 200 kHz . The KG-688 uses all silicon semiconductors with an FET (field effect transistor) in the Sulzer oscillator circuit. Operators will like the $6: 1$ ratio planetary-ball, antibacklash vernier drive and the convenience of a detachable line cord which

Mini-Priced Maximus

can be stored when not in use. The cool-running instrument measures a mere $73 / 8 \times 73 / 4 \times 101 / 4$ in. Power requirements: $100-130 \mathrm{~V}, 50-60 \mathrm{~Hz}$ AC. Available from Allied Radio Corp., 100 N. Western Ave., Chicago, Ill. 60680.

Do you have champagne ears and a beer pocketbook? UTC Sound has a new line of compact and bookshelf speaker systems under their Maximus label with most attractive prices. Pictured is the Maximus 22, a two-way system for $\$ 39.95$. Maximus 33 and 44 are $\$ 56.00$ and $\$ 76.00$, respectively. Maximus 55 , at $\$ 99.50$, is

UTC Sound Maximus 22 Speaker System
a full three-way system which may be used horizontally on bookshelves, or free-standing in a vertical position. All units have the acoustic suspension principle. But the manufacturer claims higher effectiveness than is usual with this type, and says their design permits the use of these speakers with amplifiers of relatively low power. All units have removable grilles and oiled walnut cabinetry. At most stores, or contact UTC Sound, Div. of TRW, 809 Stewart Ave., Garden City, N. Y. 11530.

POPULAR SAMS BOOKS

USE THIS HANDY ORDER FORM

RECENTLY PUBLISHED! TIMELY!

\square Modern Dictionary of Electronics. New 3rd Ed. Now defines more than 16,500 terms; includes special pronuncia. tion guide, most widely uned symbols and abbreviations, new terms in latest specialized fields. The most complete authoritative electronics dictionary available. Order 20600, only $\$ 9.95$
101 Questions \& Answers About CB Operations. Complete answers to the most frequently asked questions about CB radio, including permissible uses, licensing, FCC rules, operating procedures, tips on selecting CB equipment. Order 20604, only $\$ 2.50$
Practical Problems in Number Systems, Logit and Boolean Algebra. A 62 -lesson introduction to the mathematics of digital computers. No special background in mathematics is required for understanding. Order 20609, only
$\$ 2.95$
Experimenial Earth Sciences. This fascinating book onables you to learn about the earth and its atmosphere through 60 simple experiments in the subjects of meteorology, astronomy, geology, and oceanography. Order 20601, only.
\$2.50
How To Read Schemalic Diagrams. Not only shows you how to read and interpret diagrams, but analyzes each component, its construction, and its circuit purpose and use. Order 20368, only......... $\$ 2.95$
\square TV Servicing Guide. Tells you bow to apply proper trouble shooting procedures based on amalyais of symptoms, illustrated by picture tube photos. Packed with troubleshooting and servicing hints. Order 20361, only
Color-TV Servicing Made Easy. Vol. 1. Full explanation of color principles, circuitry, setup adjustments, and servicing of all color.TV sets. Takes the mystery out of servicing color-TV. Order $20135 \ldots . . . \begin{aligned} & \text {. } \\ & \$ 3\end{aligned}$
ABC's ol Citizens Band Radio. newly revised $\&$ UPdated. All you need to know about planning and setting up a CB 2 -way radio system. Explains functions, principles, setup and operation, latest rules and regulations. Order 20019

- Transistor Ignition Systems Handbook, 20238
TV Tube Symptoms \& Troubles. 20476....
2.25
.52 .95
1.95 Understanding Telemetry Circults. 20518
1.95 2nd-Class Radiotelephóne Lleensa Handbook. 20316 Modern Dietionary of Electronles, 20151. 4.75 Modern Dietionary of Electronies, 20 Hi......... 2030 C Color TV Trouble Clues. 20120 . 7.95 3.95
1.95 - Solving TV Tough-Dags. 20403 1.95
3.25

FAMOUS ABC'S BOOKS

- HOWARD W. SAMS \& CO., INC. -

Order from any Electronic Parts Distributor, or mail to Howard W. Sams \& Co., Inc., Dept. KT-1 4300 W. 62 nd St., Indianapolis, Ind. 46268
Send books checked above. \$ enclosed.
\square Send FREE Sams Book Catalog.
Name
pleast brimp
Address
\int
City
tate
Zip

됃ㄷㄷㄷㄷㄷㄷ

©. This ol' Bookworm is working hard. So many good books are being published that the Editor said, "Okay, give some extra coverage." But then he has to be nice to me, because he goofed in the last issue. Get all the facts from his editorial "Positive Feedback" on page 21.

Amps Amplified. Many audio fans and experimenters want to enjoy the pleasure of designing and building their own audio amplifiers from the ground up, and the ol' Bookworm is no exception. To do this, we need more than an explanation of how an audio amplifier works. We need a practical understanding of audio equip-

ment design and a simplified method of arrivirifg at the numerical values of the various components. Audio Amplifier Design, by Farl J. Waters, fulfills these needs in a "one-book design course" showing how to design amplifiers from a single stage to a complete, multi-stage stereo system.
Each stage of an audio amplifier is first discussed in theory; then design methods are illustrated by working an example to show how component values may be determined. Finally, a design problem is tackled and solved. A feature that will appeal to those who find mathematics distasteful is the generous use of nomographs throughout the book. With these, problems can be solved merely by laying a straight edge across appropriate values and reading off the answers.

Copies of Audio Amplifier Design are available from electronics parts distributors and bookstores throughout the country, or from the publisher, Howard W. Sams \& Co., Inc., 4300 W. 62nd St., Indianapolis, Ind. 46206.

Not New, but Great! When a book comes up for its Seventh Edition, this ol' Bookworm looks upon it as an old friend that's found the Fountain of Youth. Practical Electrical Wiring by H. P. Richter has been completely revised and updated to conform to the latest National Electrical Code. The text, designed as an in-

struction manual, enables the reader to learn electrical wiring in a practical fashion, for homes and farms, as well as for industrial and commercial structures, schools, and churches. Using a logical step-by-step procedure, from principle to method to execution, the author tells not only how to do things, but also clearly explains why.
Practical Electrical Wiring consists of three parts: Fundamentals of electrical work, terminology, basic principles, theory; wiring of residential buildings and farms; wiring of non-residential buildings. Major topics covered include theory, basic principles, measurements, power factor, transformers, circuits, overcurrent devices, wire sizes, connections, joints, grounding, switches, wiring methods, lighting, motors, appliances, power plants, and factories.
Most book stores will carry this valuable text and reference book. If you can't find it, write to McGraw-Hill Book Company, 330 W. 42nd St., New York, N. Y. 10036.
(1) Zeners Again. A completely new Zener Diode Handbook has just been published by Motorola Semiconductor Products Inc. This handbook supplies applications information for the widespread product advances in zener di-

odes and zener-like devices. It covers applications for temperature compensated zeners, reference standards, current regulator diodes, and zener transient suppressors as well as the latest types of zener diodes.

The handbook is organized to give the circuit designer all the data necessary for the efficient use of zener components with the major emphasis on circuit design. Proven, basic circuits are also provided as take-off points for the designer's own requirements. You may find your next project diagrammed in this text.

Chapters important to the experimenter include information on zener diode theory, zener characteristics, applications, and a cross refer-ence-selector guide for zeners.

The Zener Diode Handbook is available from franchised Motorola distributors or the Technical Information Center, Motorola Semiconductor Products Inc., Box 13408, Phoenix, Arizona 85002.

D By the Numbers. Mathenatical Quickies, a diverse and intriguing collection of problems, offers a double challenge to the math puzzle enthusiast. The author, Charles W. Trigg, Dean Emeritus, Los Angeles City College, has for over thirty-five years been familiar to the readers of the problem section of various mathematical magazines. He has published over 600 articles and problem solutions and has proposed over 300 challenge problems in domestic and foreign mathematical periodicals. From his collection of over 16,000 problems he has selected 250 for the inclusion in his book. Although the problems are interesting in their own right, the emphasis is on the method of solution. thereby challenging the reader not only to solve the problems, but also to devise neater, quicker, more elegant solutions than those provided.

The problems involve elementary concepts in

TAKE A BREAK...AND PICK UP THE 1968 CB YEARBOOK NOW!

Just $\$ 1$ at your local newsstand or ask us to send you a copy!

505 Park Avenue New York, N. Y. 10022
Yeahl Send me a copy of the 1968 CB Yearbook and make it snappy. Enclosed find $\$ 1.25$ to keep the mailroom boy in fish-n-chips.

Name.

Address .
Clty State Zlp.

at your newsstand January 11 th
Now you can reserve the newest, most exciting magazine for those whose interest in electronics is on the bobby level. The ELECTRONICS HOBBYIST contains easy to build, tested and proven construction projects of every description.
FOOLPROOF DESIGN! EASY CONSTRUCTION! Each coristruction project has been carefully researched and tested by experts. Each article is complete with theory, construction tips, parts lists, diagrams and photos.

RESERVE YOUR COPY NOW!

| THE ELECTRONICS hOBByISt
I 505 Park Avenue / New York, N.Y. 10022 RTVE-268
| Please reserve my copy of the 1968 Electronics Habbylst Annual. Enclosed is $\$ 1.25$ which includes postage and han.
dling.

Can't find the key to

 electronics?

 electronics?}

- then get your electronics cool with this introductory offer to the two leading electronics magazines! Use coupon:

- Now, both of these fine magazines will be delivered to you at the special subscription rate of just $\$ 7.00$. . . save $\$ 2$ from newsstand price.

ELEMENTARY ELECTRONICS

The magazine that serves up electronics theory in pleasant spoonfuls and reinforces the knowledge you gain with exciting and useful projects.

RADIO-TV EXPERIMENTER

The magazine dedicated to the hobbyist-the man who wants to obtain a fuller and broader knowledge of electronics through the applications of his hobby.

the fields of arithmetic, algebra, plane and solid geometry, trigonometry, number theory, and general recreational mathematics, such as dissections, cryptarithms, and magic squares. A variety of methods of solution are employedsome conventional, some unorthodox though

mathematically sound-but the same special technique is seldom used in more than one solution. Since part of the challenge in solving problems is to identify the most appropriate mathematical discipline to use, the problems have not been segregated by field. The order of difficulty varies from the very simple to some that will challenge the graduate student. Difficult problems are interspersed with easier ones throughout. Approximately one third of the solutions and many of the problems are new.

Mathematical Quickies is divided into two sections: The first consists of challenge problems consecutively numbered; the second contains the quickie solutions correspondingly numbered. Passage from problem to solution and vice versa is facilitated by the problem titles and the dictionary style page headings. The problems are clearly and concisely stated and illustrated where this will facilitate understanding.

Check your local bookstore for this book or write to McGraw-Hill Book Company, 330 W. 42nd St., New York, N. Y. 10036.

Grantham School of Electronics 2-68-RT

1505 N. Western Ave., Hollywood, Calif. 90027
Please mail me your free catalog, which explains how Grantham training can prepare me for my FCC License and Associate Degree in electronics. I understand no salesman will call.

(3)

Grantham School of Electronics

has conleried on

John Doe
the degree of
Associate In Science in Electronics Englnecring ,

Success in Electronics Comes as Naturally as

1-2-3

through Education

There they are - three big steps - three deliberate steps which lead directly to success in electronics. Your future is shaped by the moves you make - by the steps you take. Begin now with Step \#1.
STEP \#1 is a simple request for full information on the Grantham Associate Degree Program in Electronics. You take this step by filling out and mailing the coupon. We mail our catalog to you; we do not send a salesman.

STEP \#2 is earning your FCC first class radiotelephone LICENSE and radar endorsement. You complete this step in the first two semesters of the Grantham educational program (by correspondence or in residence). Train with the school which gives associ-ate-degree credits for your license training, offering you the opportunity to advance beyond the FCC license level to a college degree in electronics.
STEP \#3 is earning your ASEE DEGREE. This degree is conferred when you have earned credit for all five semesters of the Grantham curriculum.

Semesters 1 and 2, as mentioned above, are offered by correspondence or in residence.

Semester 3 is offered in residence, or students who have extensive practical experience in electronics may receive credit for this semester - credit based on that experience.

Semester 4 is offered by correspondence or in residence.

Semester 5 is offered in residence.

Accreditation, and G.I. Bill Approval

Grantham School of Electronics is accredited by the Accrediting Commission of the National Home Study Council, and is approved for both correspondence and resident training under the G.I. Bill. Just mail the coupon, or write or telephone us for full information without obligation.

Grantham School of Electronics

1505 N. Western Ave. Hollywood, Calif. 90027

Telephone:
(213) 469-7878

818 18th Street, N.W. or Washington, D.C. 20006

Telephone:
(202) 298-7460
"Down with California kilowatts!" squeak the QRPers. Their argument:

Peanut Whistles Spell Progress

By Robert M. Brown, K2ZSQ

What's that? Talk halfway around the world with a peanut-whistle rig? Preposterous as this may seem, hundreds of low-power ham addicts are doing it every day-and to the confoundment of their kilowatt counterparts. Using in most instances only a single transistor or tube in the final of a home-brew transmitter, these chaps are racking up contacts all over the U.S., not to mention Britain. Germany, Czechoslovakia, and even Australia.

Key to this organized underground is challenge. In a world where just about everything is hell-bent on high power, these fellowsmany of them in their teens-pride themselves on their operational skill and knowledge of propagational techniques. Kilowatts? Who needs them!
"If you're a polished operator who knows how to pull signals out of the noise level, you're halfway there," argues famed low-power addict W3RZL.

Up With QRP! Known in ham circles as "that crazy QRP crowd," the scattered group of die-hard anti-power enthusiasts insists that Federal Communications Commission is responsible for the whole thing. And well it may be. For hidden amongst paragraphs of regulations pertaining to amateur radio in the U.S. is a clause which states that "only so much power as is necessary to establish contact shall (Continued overleaf.)

Peanut Whistles

be used by participating stations." Of course, everyone knows that this clause runs unenforced, but the flea-power boys have formally adopted it as their motto. "Down With California Kilowatts" and "Switch To QRP" are more than mere slogans to the peanutwhistlers!

Another argument is the very definition of QRP itself. One of a series of Q -signals, this three-letter combo is used as an abbreviation for "Decrease Power" or "Must I Decrease Power?", depending on whether it is followed by a question mark. Like the other Q-signals used extensively in CW work, it makes for quick transmission of commonplace messages; it also eases communicating with a foreign counterpart who might not understand if everything were spelled out. But the fact that QRP is included at all in the official International Q-Signal List convinces the low-power crowd that flea-power is more than an integral part of hammingit's a worldwide movement!

In With The Best. To add insult to injury, the low-power enthusiasts are constantly chalking up real names for themselves. News spread like wildfire when a certain 5 -watter in Mozambique managed to work all Continents on 20 meters during one ten-hour stint. Others have embarrassed technicians time and again by shifting to the bands above 50 MHz and piling up rare states and counties using a bare minimum of RF output.

Even more incriminating (so far as the rest of hamdom is concerned) are the staggering totals these fellows rack up during on-the-air Sweepstakes and VHF Contests. In recent years, nearly every coveted ham award (Worked All Continents, Worked All States, Worked All Counties, etc.) has been picked up by at least a few very-low-power hams bent on "destroying the myth that you need 500 watts to call yourself a radio amateur."

Actually, under a kind of unwritten inter-

1—Check, check, and recheck again! Fleapower mobileers, a rapidly growing group, delight in constantly refuning their trunkmounted rigs for maximum signal output. 2-Typical QRP enthusiast uses minimum of equipment. The secret? Operational skill. 3-Basically a phone setup, this is shack of QRPer Ken Bourne, K9GHR, Lombard, III.

2

3

national agreement among hams, anything under 100 watts to the final of a transmitter can technically be referred to as QRP. And indeed when QRPism was in its infancy it abounded with 90 -watters and the like who delighted in setting themselves off from the rest of the hobby by proclaiming "Up With QRP!" This, however, was short-lived. Today, top-eschelon flea-power addicts pride themselves in the latest state-of-the-art gear -much of it involving not mere transistors, but such devices as field effect transistors (FETs) and linear integrated circuits (ICs). Power levels generally run under one watt to the antenna. And while the $75-$ and $90-$ watters are still around, QRPdom's undisputed leaders are the semiconductor experimenters and propagational experts.

Flea Heroes. To the uninitiated, the "bible" of flea-power hamming is something called Antennas, a thick book written by John Kraus which deals exclusively with the problems of antennas and related subjects. Hard-core QRPers quote Kraus as frequently as today's in-crowd talk about Marshall McLuhan, devoting every waking hour to still another interpretation of what Kraus really means about low angles of radiation, 11degree Yagi tilts, and the like.

To understand this devotion to a hero, you must first realize that a flea-power ham relies almost entirely upon his transmitting/receiving antenna for his success. The antenna is his mark upon the world (to say nothing of his neighborhood). His ham shack abounds with feedline indicators, neon bulbs, scratch paper with such jottings as " 34 wavelengths $=10,645$ feet," and the almighty SWR meter.

To compare Kraus with standing waves would be like talking about Henry Ford and gas mileage all in one breath. But the plain fact is that achieving a perfect $1: 1$ SWR is to a QRPer what getting 32 miles per gallon is to a Volkswagen owner. Maximum efficiency and energy transfer to the antenna are bywords that are all-important to the lowpower boys, and the less wattage that is generated, the more crucial these factors become. If you're willing to settle for a $1.5: 1$

4-Believe it or not, you're looking at WA2FSO/WB2DIE's 22-turn helical array, a formidable circularly-polarized radiator that would make the most devoted VHF fleapower addict's mouth water with envy. With 20 dB of gain, who needs a kilowatt? 5- What those Europeans won't tryl The rig: a l-watter. The site: the Austrian Alps.

Peanut Whistles

SWR or couldn't care less about multiplewavelength feedlines, you'll never cut it with this crowd.

Second only to Kraus and his fervent group of rooftop followers is the Ultimate Reception Society, an informal group of QRPers who insist that "you can't work 'em if you can't hear 'em." These devotees will spend $\$ 3000$ on the latest in a solid-state communications receiver with product detectors, automatic noise cancellers, and panoramic adaptors, yet invest perhaps $\$ 13$ in their transmitter. Unlike the antenna people, this group has no permanent leader, though it tends to adopt certain favorites as the state-of-the-art advances.

Recently, for example, the URS boys are turning to Allen Katz, K2UYH, for guidance and direction. Katz, who innocently inter-
preted and publicized the wonders of a sophisticated receiving technique known as synchronous detection, presently finds himself receiving piles of mail from low-power hams who want to know how they can improve their receiving setups.

Unfortunately, Katz tends to talk in graphs and formulas, spouts such things as "equalization techniques" and "opposite pulsing," and generally requires interpretation by learned persons adept at translating engineering advances into ham-type practicalities. Understandably, then, anyone who can authoritatively quote Katz will most certainly be invited as a guest speaker at the next club meeting. In interviewing K2UYH for this article, however, we found the man personable and enthusiastic about his work and eager to pass on his findings to QRPers.
"What everyone seems to be forgetting," he states emphatically, "is that ultimate receiving equipment is still no substitute for a truly skilled operator." How many hams
(Continued on page 127)

BY HOWARD S. PYLE, W7OE

QRP? An expression rapidly becoming popular in the dedicated Ham circles of low-power transmitter enthusiasts to describe flea-powered rigs . . . less than 10 watts input. And along with mini-cars, mini-skirts and the general trend to "mini" this and "mini" that, QRP Ham rigs are taking their place in the field of "Now you see it-now you don't."

Our little Mini-Mite really takes the cake with 15-, 20-, 40-, and $80-$ meter amateur CW bands instantly switchable from the front panel. The rig is adaptable to any type of antenna with no external matching units or similar gimmicks to fool with, and it provides instant choice of internal power source or external supply! In other words, muchum en parvo, or something like that, which, in the Italian language is supposed to mean "much in little." And all in an enclosure only $4 \times 4 \times 6 \mathrm{in}$. Want to hop on the QRP wagon?

Mini-Mite Autopsy. Let's play surgeon and start with the internal organs: they are as vital to Mini-Mite as the heart and lungs in a human. Unlike the human, however, this little jewel has four hearts; each a complete transmitter in its own right.

Basically, these "hearts" are the recently introduced of-

MINI-MITE QRP

ferings of the International Crystal Manufacturing Co ., and are known as the $O X$ Oscillator Kit. Each is a self-contained transistor oscillator mounted on a neatly lettered printed circuit board only $11 / 2$-in. square! These are available for any frequency you want within a range of 300 to $60,000 \mathrm{kHz}$.

Fundamental crystals are used on all fre-quencies-you can use your own crystal or International's EX type-the choice is yours. Each complete oscillator kit costs but $\$ 2.35$, which includes the transistor, printed circuit board and all components except the crystal. We stole a march on International as ap-
parently these were designed solely for test oscillators with no thought of their communications possibilities.

But with an input power of 1.2 watts using a 6 -volt DC power source, and up to 1.8 watts with a 9 -volt supply, the author has confirmed contacts of 1100 miles on 15 meters, 600 on $20 \mathrm{M}, 300$ on 40 M and 200 miles on 80 M . That's bad?

Making Mini-Mite. It will take you about twenty to thirty minutes to assemble and solder each kit from the simple instructions supplied. The four little units are then mounted on an aluminum sub-panel as shown in the photos. For those who want to duplicate the mechanical essentials of Mini-Mite, included is a dimensioned drawing of the sub-panel. This is really all the mechanical

detail needed as any type of enclosure can be used and any parts of the non-critical type, such as switches, connectors, etc., that your junk-box may produce can be substituted. For these, you can easily work out your own component placement and drilling templates to match. Mounting screws and metal spacers are furnished with the oscillator kits, so no problem there.

By using a sub-panel, wiring is perfectly straightforward and there's little of it as the schematic indicates. Make all the internal connections you can before securing the subpanel to the enclosure. In the prototype, the sub-panel is mounted with four $11 / 2-\mathrm{in}$. lengths of $8 / 32$ threaded brass rod (most any hardware or Ham supply house carries it).

The sub-panel is spaced from the front
panel with 1 -in. spacers cut from $1 / 4-$ in. copper tubing. An acorn nut on each end of the threaded rod holds the whole assembly firmly in place. The little 9 -volt transistor battery, which serves as the internal power supply, is mounted on the sub-panel between the two pairs of oscillator boards. Incidentally, these batteries will last quite a while since current drain is only 20 mA and this, of course, is only in the "key down" condition.

The battery supply lets you take Mini-Mite with you on hunting, fishing and camping trips to keep contact with home base. Taking a couple of extra batteries along just to play it safe is a good idea if you're making an extended stay.

QRP Power. When using Mini-Mite at the home base, a conventional rectified AC

Schematic of Mini-Mife. Switch SI selects any of four amateur bands$15,20,40$, or 80 meters.

PARTS LIST

B1-9-VDC transistor battery (Eveready 216 or equiv.) C1-100-uF variable capacilor llafoyette 40C2885 or equiv.)
C2-.001-UF, 600-VDC sopacitor
D1-1N34 diode
J1, J2—RCA-type phono jack, insulated mounting
J3-Feed-through connector, insulated Hafayette 33C. 3201 or equiv.l
14, 15, 16, 17— 75 -8hm coax connector, 50-239 (Radlo Shack 278-201 or equiv.)
LI-Looding coil, 72 furns \# 28 enameled wire on $3 / 8-\mathrm{ln}$. form
MI-Fleld-strength meter Shurite 89032 or equiv.l (available from Shurite Meters, Box 1818, New Haven, Conn. 06508 at $\$ 4.50$ postpaidl
Ose. 1, 2, 3, 4-OX oscillator kit, 3 OX-LO, 1 OX-HI lavailable from International Crystol, 10 N . Lee, Oklahoma City, Okla. 73102 at $\$ 2.35 \mathrm{ea}$. postpaidl
S1-3-pole, 4-throw single deck rotary swith
S2-5-position, 1-pole rotary switch ILafoyette 30C4013 or equiv.)
\$3, S5-D.p.d.f. rotary or toggle switch
S4-S.p.s.i. rocker or toggle switch
56-S.p.s.t. normally open pushbutton switch (Radio Shack 275-008 or equiv.)
Misc.-Wire, solder, $4 \times 6 \times 4-\mathrm{in}$. sloping-ponel chassis box, decals, etc.

MINI-MITE QRP

supply can be used to conserve the battery. Rather than build a little power box, the author used a Radio Shack 22-023 regulated, variable-voltage transistorized DC power supply. This makes a perfect companion unit for Mini-Mite and will serve equally well as a power supply source for experimental transistorized equipment. This supply provides up to 20 VDC at 200 mA with exceptionally smooth control, and is more than adequate for most transistorized gear. Equipped with a meter that reads both volts and milliamperes, it makes a convenient way to check your power input instantly. Selection of either the internal battery power or the external AC source is accomplished by a d.p.d.t. rocker switch on the rear panel.

Note that Mini-Mite is equipped with four coax connectors and a feed-through insulator for antenna connections, all in line on the rear panel. This you can take or leave. It happens the author has four dipoles (one for each band) and preferred to leave Mini-Mite semi-permanently connected at the home station, hence the four coax connectors.

Any Old Antenna. The feed-through insulator provides for connection to any random length antenna for portable operation. The s.p.d.t. rotary switch in the top center of the rear panel, labelled COAX and RANDOM, permits switching any oscillator output to the feed-through insulator or to the series of coax connectors. The band selector switch on the front panel has one section which selects the appropriate coax connector for the band selected.

A second section on the band selector switch connects the positive lead from the power source to the oscillator assembly used for that band. The negative voltage is applied only when the hand key or test button is pressed; the power source, of course, remains idle at all other times. The third section on the band selector switch selects the RF output terminal on the desired oscillator and connects it to the radiating circuit.

While the oscillator functions on the fundamental of the crystal with no tuning adjustments, it does not necessarily mean that the most effective loading of the antenna will automatically result. This is particularly true when a random-length wire antenna is used in portable operation. Therefore, a means of resonating the antenna to the load will assist in getting maximum radiation
characteristics. Accordingly, incorporated right in the Mini-Mite cabinet is an all-band L/C loading network that has proven most effective.

Not only has this L/C combination permitted resonating a random wire of reasonable length but has also proven to be of noticeable value when used with a frequencyconscious dipole or other conventional antenna.

Robust Radiation. Provision is also made for switching the antenna tuning capacitor in series with the loading inductance or in parallel across it, by means of a d.p.d.t. toggle switch. The inductance is adjustable in four steps by tapping the coil and connecting the taps to a 5 -point rotary switch (single pole). By choosing the proper amount of coil inductance in combination with the variable capacitor in either sevies or shunt connection, proper loading of the antenna circuit is easily obtained.

The coil consists of a total of 72 turns of \#28 enameled wire wound on two $3 / 8-\mathrm{in}$. diameter forms (wooden dowels), 36 turns on each. Splitting the coil makes it possible to fit it comfortably into the available space. Since the halves of the coil are connected in series, it is in effect a single inductance. Taps were taken at approximately equal distances along the length of the winding.

The meter is a desirable asset in tuning the antenna network and a resonant condition is indicated by the highest reading. This peak will be fairly broad but will vary from about quarter to half full scale reading on the meter selected, depending on the input voltage from the power source.

The meter used is a special field strength meter made by Shurite. If not available from local supply sources, it can be ordered directly from the manufacturer (see Parts List).

From the foregoing description, it should be simple to work up a reasonable facsimile of our Mini-Mite and enjoy a heretofore relatively unexplored and exciting field. There's a great deal of excitement in trying for the amazing results possible with an input power considerably less than that required for a conventional radio dial lamp! We suggest that in your initial efforts in the QRP field, first establish local contacts to get the feel of mini-power. Once you've mastered the simple QRP techniques, you're ready to demonstrate what the QRP Amateur Radio Club International often use as an unofficial slogan . . . "POWER is no substitute for SKILL!"' Go to it, and good DX! 圈

Short Wave for Non-SWL's

By Thomas R. Sundstrom

- Today, one problem of the beginning shortwave listener (SWL) is that he's confronted with a confusing mass of information concerning equipment and stations to be heard. Also, though these beginners express a serious interest in SWLing, many soon fall by the wayside when their results fail to match the seemingly tremendous reports turned in by some of the old pros.

The beginning listener shouldn't be discouraged, since many of these top DXers have spent many years accumulating knowledge and experience of what to look for and when.

Another problem is that many listeners start SWLing with relatively inexpensive receivers, mostly those selling for less than $\$ 75$. They often fail to realize that a 4 -tube general coverage receiver that lacks an RF stage, selectivity provisions, a regulated power supply and other DX boosting circuitry just will not, under any circumstances, perform as well as an 18 -tube giant that retails for $\$ 450$.

Of course, when conditions are right, a small receiver can do wonders. For example, the author heard the Radio Nacional de España outlet on 684 kHz in Madrid, Spain one winter morning when 680 and 690 kHz were quiet. This was on the standard AM band and the receiver was a 4 -tube clock radio!

DX Dollars. Of course, if the new listener is willing to invest just a little more money, he will find an excellent selection of receivers in a price range of $\$ 100$ to $\$ 250$. Both
new and used receivers are available, and almost anything is better than the 4-tube job.

Older receivers can be an excellent buy since the previous owner may have traded one in just because he wanted a new model. Watching the classified ads in the local newspaper may turn up a used receiver faster than waiting for one in the local radio store; check out all the possible sources.

If you do purchase a used receiver, contact the local radio amateur club to determine who services communications equipment (or look in the telephone book). Normally, it is not a good idea to trust service work to the average locat radio-TV repair shop, as most are not equipped to solve the problems pe-

One way to get started SWLing is with a homebrew regen receiver like this one. These sets offen produce surprisingly good results.

Shortwave for Non-SWLs

culiar to these communications receivers.
You may find that a used receiver could use minor realignment and calibration before you start using it. The service man should be willing to discuss your prospective purchase and give you an estimate of cost involved.

Launching An SWL. To get the novice headed in the right direction, there are some preliminary items that ought to be mentioned. First, the receiver must have some degree of accuracy in spotting specific frequencies in order to be much good at locating desired stations.

If the receiver does not have a crystal calibrator built into the set, it would be very
familiar with your receiver and you can use the crystal calibrator accurately, you are ready to go to work on locating some real DX.

Beginning listeners often just tune the shortwave bands at random and increase their total stations and countries heard by chance. But, if you plan your listening, much more can be accomplished. The organized approach requires some basic SW information as well as some means of updating the material.

For those who prefer to tune the SWBC bands, the SWL bible is the World Radio-TV Handbook, published annually in Denmark. This volume contains a complete listing of all broadcasting stations in the world, including schedules, addresses and reams of other helpful information. It does not cover U. S. and Canadian stations broadcasting on domestic

useful to purchase a separate unit. These can be had either in kit form or assembled; check the receiver manual to see if your rig has provisions for one inside the set before getting an outboard unit. Virtually all crystal calibrators are $100-\mathrm{kHz}$ units, but the crystal can easily be changed to a $500-\mathrm{kHz}$ unit if your receiver cannot separate the closely spaced $100-\mathrm{kHz}$ signals.

With A Calibrator. By setting the main dial to the same point (one for each band) determined by the calibrator's marker signal appearing every 100 or 500 kHz , depending on the crystal used, the same frequencies will appear at the same bandspread dial settings each time you tune. Calibration graphs or tables can be prepared for receivers having a 0 -to-100 bandspread dial. Once you are
(AM, FM and TV) frequencies, but these can be found in White's Radio Log. The World Radio-TV Handbook costs $\$ 5.95$ from Gilfer Associates, Box 239, Park Ridge, N. J. 07656; ask about the Summer Supplement, too.

Ham Band Listening. If you are interested in the amateur bands, pick up one or both Radio Amateur Callbooks. Both are published quarterly, and may be obtained in almost any electronic supply house selling amateur radio equipment. The first callbook lists all the amateurs in the United States ($\$ 5.95$) and the second lists amateurs elsewhere in the world (\$3.95).

To up-date SW listings and other information, White's Radio Log and SWL club bulletins are the best sources available. There are

National HRO 500

Lafayeffe HEb 30

The over-a-hundred dollar receiver will provide addifional feafures, depending on price, that ensures the maximum in Hertz-snatching DX.
several fine SW clubs in the United States, and they have members from all over the world reporting each month. The Association of North American Radio Clubs (ANARC) is an organization of clubs; club representatives work together to better the lot of the SWL. Those clubs in the ANARC that have bulletins covering the SW field are the Newark News Radio Club, the American Short Wave Listeners Club, and the North American Short Wave Association, among others.

Clubs For SWLs. The Newark News Radio Club is the oldest SWL club in North America, having been established in 1927. Its monthly bulletin covers both SWBC and amateur DXing, as well as broadcast band, utilities, FM and TV. A sample bulletin may be obtained for 25 द from the Newark News Radio Club, 215 Market St., Newark, N. J. 07101.

Incidentally, LeRoy Waite, NNRC amateur editor, works with Rod Newkirk of QST's column "How's DX?" Almost any amateur will have this magazine-perhaps you can borrow a copy to check the latest amateur news.

Many avenues are open to the SWL with a limited budget, such as this listening post equipped with vintage receivers obtained for next to nothing.

The North American Short Wave Association (NASWA) has a very fine SWBC-only bulletin. This club bas grown rapidly in the last few years after changing from an allband format. News is current and well-

detailed. Write for a sample bulletin (25¢) to William P. Eddings, NASWA, Box 989, Altoona, Pa. 16601.

Another good club is the American Short Wave Listeners Club (ASWLC) that began operations in 1959. It, too, at one time dealt with all aspects of DXing, but in recent years the ASWLC has specialized in SWBC and utility band DX. For a sample bulletin

Another possibility for a low-cost/highperformance purchase for the beginning SWL is an ancient communications receiver like this old Hammarlund HQ-1 29-X.

Shortwave for Non-SWLs

(25¢), write to The Publisher, ASWLC, 16182 Ballad La., Huntington Beach, Calif. 92647. C. M. Stanbury II, whose articles frequently appear in Radio-TV Experimenter, is an editor of this bulletin.

How can the beginning listener use all this information? It's really quite simple. The secret of a good session at the dials is organization.

Planning Your Catches. Examine the schedules of the stations in the countries you would like to add to your log. In the World Radio-TV Handbook you will find this information, as well as the stations' frequencies and slogans. Note anything peculiar about stations you want to bag. Compile another list from recent club bulletins, and check conflicts with the notes made from the WRTVH. Unless the reporter made a mistake; the bulletin's information can usually be depended on.

Arrange your listening notes by time. Having this information, you can tune your receiver to the best frequency-determined by Propagation Forecast in this issue-ahead of time, then just fine-tune the receiver wherr the interval signal opening the program begins. If the frequency you chose is not yielding a good signal, refer to your notes and select another frequency.

If reception conditions are such that it is

Some of those great old multi-band consoles are still around and can be had for a song. Look at the QSLs bagged with this one.
impossible to hear the station you want, skip it for that day and go on to the next station on your list. If you check each day, you are bound to find conditions ripe to bag that elusive one.

When tuning the amateur bands, you have a slightly different problem. Obviously, Hams do not adhere to schedules and wander in transmitting frequency. However, there are various expeditions to remote areas or countries of the world that may have a Ham or two along and they sometimes announce preplanned transmission schedules and frequencies. Check QST for these; later, other ama-
(Continued on page 130)

Commercial shortwave broadcasters all over the world are more than anxious to send the SWL a QSL card verifying reception; here are a few samples of what to expect.

3

WEIRDOS WE WONDER AT

FOR SPACE $\$

Oversized tinker-toy makes mock up moon-jaunt for earth-bound spacemen

Lovely to behold, this clever device will give our spacemen lots of much-needed practice in the noble art of space-walking, which is somewhat different from other kinds. The setup here is a sort of simulator that approximates the conditions of weightlessness. If after carefully looking over this gadget, you're still a bit dubious about its value, don't be. At $\$ 280,000$ it's a steal!

〈 FOR INDUSTRY

How five million little data-bits went to Mariboro Country
Some sneaky scientists went and put five million bits of computer data on a piece of film in a container much like a pack of smokes. But caution: it may still be hazardous to your . . .

FOR HOME [$\$

Brotherhood, fraternity, and summer tang in winter fruit
If you thought that bread in every basket and copper-tone appliances in every kitchen were the standard bearers of the really Great Society, think again. It turns out that the mark of technological progress actually comes to us under the unassuming name of Gro-Lux. This end-all solution to everyone's problems puts cheer in your soul as it puts a healthy summertine glow on pale winter fruits placed in the bowl. How 'bout that!

CB Moonshine
 By C. M. Stanbury II
 > It takes all kinds of people to make up the 11 -meter band and I had to go tangle with the pea picker whose QSL card was as choice as his daughter!

 It takes all kinds

 It takes all kinds of people to make of people to make up the 11 -meter up the 11 -meter band and I had to band and I had to go tangle with go tangle with the pea picker the pea picker whose QSL card whose QSL card was as choice as was as choice as his daughter!

 his daughter!}- "This is the Mountaineer calling, Mountaineer calling CQ. Anybody hear me out there?"

He pinned my S-meter as I snaked along West Virginia 17 on the East bank of the Kanawka River. Several times I'd worked him from California on skip, but now, here I was, right in the old man's back yard.

Mountaineer came back, and completely swamped channel 2. "I hear you New York. If you hear this old mountaineer, send him a QSL card." Like the FCC didn't exist. "Just send it to the Mpuntaineer, Seven Creek, West Virginia."

There were actually four guys from New York trying to work him.

I passed through a spot called Piny, which is right across the river from Buffialo. It was his QSL that brought me. I had sent him three of mine, one after each of our QSOs, but the mails had brought nothing back from Seven Creek.

He was on again. "Reason you hear the
old mountaineer so good is because of my compressed modulatión. Watch what happens when I spread it out to normal."

My needle dipped. A road sign ahead said Seven Creek. I swung off the highway hard-top onto a gravel one laner which led up out of the valley. Rumorr had it that the old boy's QSL was something special, like solid gold maybe, or even some kind of a hillbilly Mona Lisa.

He returned my needle to the pin. "You see what I mean. And I build these little gadgets myself. They're my own invention." Paused for breath. "Sell em, postpaid, for 35 dollars cash." Big deep laugh. "Course I'll take a money order, too."

His "compressor" was an obvious fraud. All the old man did was push his power up a couple of hundred watts. Otherwise, it wouldn't show on an S -meter. Of course, there's another rumor that says unless you buy one of his "compressors," you don't (Continued on page 131)

unrarrise Two-Timer'll Get You Traces by the Twos rorromerror

Everyone agrees that the oscilloscope is by far the most useful and versatile instrument available for use by engineers, scientists, technicians, or hobbyists. With an oscilloscope, one can measure voltage, frequency, phase relationships, time, etc. You may not think that such an all purpose device could easily be improved on. However, for the electronics hobbyist the oscilloscope is not all that it could be.

High-class oscilloscopes used by electronics personnel in such places as calibration laboratories, repair shops, radar installations, etc., are equipped with a special feature that almost doubles their usefulness. These instruments have a dual-trace function that permits simultaneous observation of two different signals with different amplitudes and frequencies.

You can equip your own modest singletrace oscilloscope with this same unique function for a few bucks and half a dozen hours of construction time, and almost double its usefulness. Our Two-Timer described here is easy to construct, and no fancy adjustments are necessary.

The Circuit. Two-Timer's circuitry consists of a multivibrator (VI), two keyer stages (V2A and V3A), two signal amplifiers (V2B and V3B), and a full-wave solid-state power supply. The entire unit is contained within a $3 \times 5 \times 7-\mathrm{in}$. chassis hox, which requires little area on your workbench, and uses only three vacuum tubes.

The operation of Two-Timer is straightforward. Referring to the schematic diagram, the initial stage (V1) is a twin-triode vacuum tube used as a balanced free-running multivibrator with a frequency of approximately $15,000 \mathrm{~Hz}$. The two multivibrator square-wave outputs (taken from the plates of VI) are 180 degrees out of phase; i.e. when one output is + (positive) the other is - (negative), and vice versa. These two out-of-phase outputs are coupled to the keying stages (V2A and V3A) via C3 and C4, and are applied to the grids.

The keyer stages are the triode sections of triode-pentode vacuum tubes V2 and V3, and are used as cathode followers. The outputs of the two keyer stages are directcoupled to the cathodes of the signal amplifiers (V2B and V3B), and maintain the phase relationship of the multivibrator outputs.

The keyer stages outputs alternately turn the signal amplifiers on and off at the multivibrator frequency $(15,000 \mathrm{~Hz})$, and in accordance with the multivibrator output's phase relationship; i.e., when V2B is turned on by V2A, and is passing its input signal on to the electronic switch output (J3), V3B is turned off by V3A, and is not passing its input signal on to the output. This condition is reversed 15,000 times a second. This means that the signals applied to the control grids of V2B and V3B are sampled 15,000 times each second, and alternately

Two-Timer'll Get You Traces By the Two's

applied to the electronic switch output from jack J3.

Electronic Switch. The signal amplifier input signals are applied to the control grids (pins 7), and come from the electronic switch INPUT A and INPUT B gain con: trols (R16 and R17), which control the
amount of signal applied to each amplifier and, therefore, the amplitude of the output signals. R13 controls the DC levels of the two traces provided by the electronic switch by controlling the relative amounts of screen grid voltage applied to V2B and V3B. Without R13, the two output signals would be

Schemalic of Two-Timer shows straightforward approach to obtaining dual traces an a conventional single-trace scope. Unit is basically a high-speed electronic switch.

PARTS LIST FOR TWO-TIMER

C1, C2-27-pF, 1000-VDC capacitor
C3 C4-0.05-uF, 200-VDC capacitor C5-10-uF, 450 -VDC electrolytic capacitor C6-20-uF, $\mathbf{4 5 0}$-VDC electrolytic capacitor C7, C8-. 001-uF, 1000-VDC capacitor D1-400-PIV, $50-\mathrm{mA}$ full-wave bridge rectifier J1, J5-Blnding posts, 3 red, 2 black (Radio Shack 274-736 or equiv. 1
L1—7-H, $50-\mathrm{mA}$ choke (Allied 5481408 or equiv. 1
R1, R2- $47,000-\mathrm{shm}, 1 / 2$-wall resisfor
R3, R4-470,000-ohm, $1 / 2$-wall resistor
RS, R8-33,000-ohm, $1 / 2$-watt resistor R6, R9-6800-ohm, $1 / 2$-wath resistor R7-47,000-ohm, 2-watt resislor R10, R11-100,000-ohm, $1 / 2$-wall resistor

R12—25,000-ohm, 10 -watl resisfor
R13-250,000-ohm, 1-wall potentiometer with s.p.s.t. switch 51

R14-10,000-ohm, 2-wall resistor
R15-22.000-ohm, 2-walt resistor
S1-S.p.s.t. switch (part of R13)
T1-Power transformer, 117-VAC pri,; 250 VAC, $25-\mathrm{mA}$ and $6.3-\mathrm{VAC}, 1-A$ sec. (Allied 54 B 2008 or equiv.l
VI-12AX7 fube
V2, V3-6AW8A fube
1-Chassis box, $7 \times 5 \times 3$ in. (Radio Shack $77-$ 0685 or equiv.l
3-9-pin miniature tube sockel
Misc.-Wire, solder, knobs, rubber feet, line cord and plug, etk.

superimposed at the electronic switch output. By adjusting the DC levels of the signal amplifiers outputs, any desired amount of trace separation on the oscilloscope screen can be oblained.

The DC level of each signal amplifier output is modulated in accordance with the applicable input signal during the time that that particular amplifier is turned on for that "bit" of the signal output. Therefore, each time a signal amplifier is turned on the DC level of its output will have changed slightly as determined by the character of the input signal applied to the control grid. The DC level changes, or lack of them, will be displayed by the oscilloscope as a representation of the input signal, and is composed of 15,000 "bits" per second. This chopping of the signal into "bits" is the main limitation as to the highest frequencies that can be viewed using the electronic switch. As the frequency increases, the signal will be composed of fewer "bits" of DC level changes, and the display will not be an accurate representation of the signal applied to the input of the electronic switch. For example, a signal with a frequency of 500 Hz is composed of about 30 "bits" of information; at a frequency of 1000 Hz , this drops to about 15 "bits," and at a frequency of 5000 Hz , about 3 "bits." Since most hobbyist activities are at relatively low frequencies, the electronic switch should prove to be quite adequate.

Construction. In constructing the TwoTimer electronic switch, the positioning of the components is not critical. While the author chose to enclose all parts of the electronic switch within a box, an open chassis could be used at the discretion of the builder. The best procedure to follow is to determine the physical location of each part first. Then drill the applicable holes and mount the tube sockets, transformers, potentiometers, etc. Finally, wire the circuit. This procedure precludes damage to the electrical components when working the chassis.

Operation. When the electronic switch is assembled, it is ready to use. No adjustments are needed. But be careful since the output terminal J3 always has a potential of approximately 270 VDC when the unit is energized. Therefore, the output terminal must never be shorted to ground, and don't grab hold of it either.

When using Two-Timer for the first time, and to perform a preliminary test of operation, set the SEPARATION control fully counterclockwise until the integral switch "clicks" and turns the unit off. Then connect the electronic switch output J3 and J4 to the input of the oscilloscope. Adjust the oscilloscope controls to obtain an AC coupled input, and a slow-speed trace.

Connect the line cord to the wall socket, and adjust the SEPARATION control clockwise to midrange. Allow the electronic

Two-Timer'll Get You Traces By the Two's

switch to warm up for about a minute, and then adjust the SEPARATION control to obtain two traces about one inch apart on the oscilloscope screen. It may be necessary to decrease the oscilloscope vertical sensitivity to keep both traces on the screen at the same time. Now connect an input signal to each of the electronic switch inputs (the

same signal can be connected to both inputs for testing purposes).

A good voltage source for the preliminary test is the filament voltage of the electronic switch tubes. Adjust the electronic switch GAIN A and GAIN B controls to obtain approximately the same signal amplitude on both traces. It may be necessary to adjust the oscilloscope sweep controls to obtain a stable display of the desired number of cycles of the signals. This verifies correct operation of Two-Timer. It is now ready for use.

Familiarity Breeds Usefulness. Once you have twisted the knobs of the oscilloscope and Two-Timer sufficiently to become familiar with the interaction of the combination, your imagination is the only limiting factor to usefulness of the dual-trace combination.

You can observe the phase relationship between a reference signal (the input to a hi-fi amplifier, for example) and signals at any other point in the circuit, measure amplifier gain, compare frequencies of signals (using the $60-\mathrm{Hz}$ house current as a reference, your oscilloscope is a very accurate frequency meter), etc. Because of the amplification of the input sigrials-approximately seven times with the gain controls fully clockwise-you can observe signals with less amplitude than your oscilloscope could "see" before. With no signals applied to the inputs, Two-Timer provides a very good square wave output, with variable amplitude (controlled by adjusting the SEPARATION control), for amplifier testing. Two-timer will permit viewing of signal frequencies up to 5000 Hz , but works best if the signal frequiency is 1000 Hz or less. Here's Two to you!

Tiny as a Thumbtack, Dazzling as a Dodo Bird

A lamp said to be ideally suited for photocell and indicator applications also happens to be a lamp quite unlike the kind most of us are used to. Reason is the new lamp is all solid-state, which means its filament is nowhere to be seen. One of the growing family of lightemitting diodes, the device was developed by General Electric and answers to the name of SSL-6.

apss TTAPEIESS

Surprise of the decade, it's a play-only device using neither magnetic tape, motion picture film, nor even thermoplastics!

By Jorma Hyypia

- The day may come when you will slip a can of Sophia Loren, Charlie Chaplin, or even Hamlet into your supermarket shopping cart. When you get home, you will dump the can into a "breadbox" near your TV set, settle down with a TV dinner, and enjoy an orgy of re-runs that you can now savor only during the summer TV doldrums. Moreover, you will view re-runs of your own choice rather than be captive to selections made by broadcast programmers.
Columbia Broadcasting System's new Electronic Video Recording (EVR) system brings the era of canned video a step closer, though it is by no means certain whether EVR will be the system that eventually becomes standard for home use. At first, EVR will be used for educational purposes; the earliest full-scale application will be in England. Video cartridges and players won't be available world-wide until late 1969, perhaps 1970.

EVR is not a magnetic video tape system. And it can not be used for self-recording of broadcast or other material, only for play-

CBS's ELECTRONIC VIDEO RECORDING SYSTEM

EVR electron beam recorder takes program from TV camera, magnetic tape, or film and generates a master which can be in either color or black and white.

High-speed multiple printer produces multiple copies from EVR master. One twenty-minute film can be reproduced in approximately thirty seconds.
back of films already containing program material.

Operating the unit is deceptively simple. The user simply places the special film cartridge into as "breadbox"-size playback unit coupled to a TV set's antenna terminals. The cartridge automatically threads itself, plays the recorded material through the TV system, rewinds, and is ejected.

Initially, the films will contain educational material suitable for classroom and related purposes. But at least one Hollywood film studio is already exploring the possibility of making EVR films from old motion pictures. This could eventually lead to home as well as classroom playback of motion pictures.

EVR is unique in that the playback can be stopped at any time for prolonged viewing of
a single scene-a feat that isn't possible with present magnetic video systems. The educational advantages of this feature are obvious. A teacher can hold a single scene as long as necessary to add his own comments. A golfer can pass slowly from one frame to the next to study the swing of a pro's golf club in detail. And the viewer of ordinary story-telling motion pictures will surely find many a scene that, for one reason or other, he would like to linger over and observe at length.

Electro-optics System. Both the preparation of the film and its playback involve the use of optics and sophisticated electron physics. In the factory, an optics-electronic process is used to transfer program material from a motion picture film or video tape to

ELECTRONIC SIGNAL

TO TELEVISION SET ANTENNA TERMINALS

STANDARD HOME TELEVISION RECEIVERS
Electro-optical transducer-probably some sort of flying dot scanner-reads cartridge to produce video and sound, which are then reproduced on one or more TV sets.
a special unperforated film, 8.75 millimeters wide. This master film is used to run off copies for purchase of EVR customers. Such copies are packaged in cartridges 7 in . in diameter and $1 / 2$ in. thick-about the size of a standard reel of magnetic tape.

EVR film has two separate tracks. If both are used, a single cartridge can hold up to one hour of black-and-white programming. Both tracks must be used simultaneously to produce color pictures; one track contains luminance, the other chrominance information. Unlike ordinary color motion picture film, EVR color film appears wholly black-and-white to the eye; however, this ostensibly monochromatic information can be translated into full-color images by the playback unit.

Secret Process. CBS officials and technicians are sitting on their EVR breadbox, jealously guarding their hard-earned secrets from competing companies. Still, it is a virtual certainty that any astute electro-optics expert can make pretty shrewd guesses about the workings of EVR. But even they aren't talking, for sound competitive reasons.

So far, CBS has mainly revealed what EVR is not, rather than what it is. EVR is not a magnetic tape system. For though the film has visible images produced by some sort of photographic process, they are not created by such orthodox photographic methods as the use of light-sensitive silver compounds. Nor are the images produced by the action of laser light or infrared light on heat-sensitive plastic, though this would

Tuperiessivereonier

theoretically be a workable possibility. CBS isn't passing out samples of film for analysis, but it is probable that the images on the film are not recognizable as specific objects. In other words, if the film were placed into a movie or slide projector, no recognizable images would be seen on the projection screen-only coded patterns (perhaps in the form of micro-dots) that might

Next, consider the extremely rapid reproduction of playback films from the master tape. CBS says that one 20 -minute program can be printed in approximately 30 seconds by a high-speed multiple printer working from an EVR master film. On playback, the EVR film moves at a speed of 5 inches per second, hence the 20 -minute film must be about 500 feet long.

But to be printed in 30 seconds, this film must zip through the processing system at a speed of over 16 feet per second. Moreover, the printing time is expected to be cut down to 13 seconds within a year or twol No

Man behind new CBS tapeless TV system is also the man responsible for launching of first $331 / 3-\mathrm{rpm}$ microgroove dise way back in 1948. President and Director of Research for CBS Laboratories, he is Dr. Peter C. Goldmark, shown here examining a bit of the super-secret EVR film that makes the new video playback system possible. Either black-and-white or color program material can be packed into exfremely norrow film.
represent a cat, a house, or Sophia Loren.
The electro-optical transducer in the playback unit is able to decode this audio and video information into an electronic signal to produce recognizable images on a TV screen. Amplitude-modulated light, produced from the film by a flying spot scanner, is amplified by a photomultiplier. This signal is converted to a video waveform that is used to modulate a TV carrier frequency.

Jiggling the Breadbox. If we shake the EVR breadbox-or rather, the limited information available about it-we can begin to hear some meaningful rattlings that just might give a hint about the nature of EVR film.

Attention is most profitably focused on the nature of EVR film and how it is made. First bear in mind that the images are probably coded data bits representing video and audio information. It is easier to cram this kind of information into small film space than to accurately record the same data in the form of continuous tone photographs as in the case of ordinary motion picture film.
ordinary photographic process involving development and fixing can yet do that.

What seems to be used, then, is some system that quickly produces an image on the film by optic (not mechanical) means and then desensitizes the film to prevent further image formation.

Photochromic Process? It is conceivable that CBS may be using photochromic techniques which have been actively researched by many companies in recent years. A large number of colorless organic chemicals (such as spiropyrans) become intensely colored when exposed to light waves in or near the ultraviolet region of the spectrum. These chemical dyes can also be treated to make them insensitive to light.

Thus it would seem possible that the EVR printing process may make use of photochromic dyes supported on the plastic film. The light patterns projected from the master film may create the coded images on the film by causing the dye to darken wherever the light strikes it. The unchanged dye remain-
(Comtinued on page 132)

10 Reasons why RCA Home Training is your best investment for a rewarding career in electronics!

1
 LEADER IN ELECTRONICS TRAINING

RCA stands for dependability, integrity and pioneering scientific advances. For over a half century, RCA Institutes, Inc., has been a leader in technical training.

bCA Autotext teacmes ELECTRONICS FASTER, EASIER

Beginner or refresher - AUTOTEXT, RCA Institutes' own method of Home Training will help you learn electronics faster, easier, almost automatically.

3 thousands of well paid JOBS ARE OPEN NOW

RCA Institutes can help you qualify for a rewarding career if you have an interest in electronics. Every year, thousands of well paid electronics jobs go unfilled just because not enough men take the opportunity to train themselves for these openings.

4. WIDE CHOICE OF CAREER PROGRAMS

Start today on the electronics career of your choice. On the attached card is a list of "Career Programs", each of which starts with the amazing AUTOTEXT method. Look the list over, pick

the one best for you and check it off on the card.

Specialized advanced training

For those working in electronics or with previous training, RCA Institutes offers advanced courses. Start on a higher level. No wasted time on material you already know.

6 personal supervision throughout

All during your program of hone study, your training is supervised by RCA Institutes experts who become personally involved in your efforts and help you over any "rough spots" that may develop.

7 VARIETY OF KITS, YOURS TO KEEP
 At no extra cost, a variety of valu. able specially enginecred kits come with your program-yours to keep and use on the job.
 8 FROM RCA institutes, inc.
 TRANSISTORIZED TV KIT AND valuable oscilloscope

All students receive a valuable oscilloscope. Those enrolled in the TV program or courses receive the all-new Transistorized TV Receiver-hoth at no extra cost and only from RCA.

UNIQUE TUITION PLAN

You progress at your own pace. You only pay for lessons as you order them. There's no long-term contract or large down-payment to lose. Even if you decide to interrupt your training, you don't lose a single cent.

10 rca graduates get top RECOGNITION

Thousands of graduates of RCA Institutes are now working for leaders in the electronics field; many others have their own profitable businesses . . . proof of the high quality of RCA Institutes training.
SEND ATTACHED CARD TODAY FOR FREE DESCRIPTIVE BOOK

> All courses and programs approved for veterans under new G.I. BllI.

CLASSAOOM TRAINING ALSO AVAILable, free catalog on request. NO SALESMAN WILL CALL.
RCA INSTITUTES, INC. Dept. RX-28
320 West 31 st Street
New Yopk, N.Y. 10001

The Most Trusted Name In Electronics

Construction of Oscilloscope.

Construction pf Multimeter.

 Propagation Forecast

By C. M. Stanbury II

With the approach of the Spring equinox, DXers can look forward to a steady improvement in Southern hemisphere signals on appropriate bands. During the early evenings, watch for Brazilians on 60 and 90 meters as well as Argentine and Chilean regionals on 49. After midnight, R. Altiplano at La Paz, Bolivia, will often be good on 5045 kHz where they seem to operate all night. Incidentally, if you should hear another station on 5044 (just 1 kHz below R. Altiplano), and can make out what they're saying, it will probably turn out to be rare R. Cook Islands. Unfortunately, the latter signs off around 0300 EST.

We have listed 41 and 49 meters as the best bands for DX reception from the South

February/March, 1968

Pacific during the early a.m. hours. But in this department, listeners on the West Coast have a decided advantage over the rest of us. Until the noise level begins to rise, they can expect regular reception from S. Pacific islands during the early a.m. period down on 60 and 90 meters. Generally, the lower the band an SWL can work from a given area, the more the DX counts. Pacific Coast DXers will also be in a good position for Asian reception.

And in conclusion, now is the time to watch for 60,49 and 41 meter stations in such places as Mozambique, Rhodesia and the now famous Botswana (BBC 4845 kHz , S/Ön 2300 EST).

RADIO-TV EXPERIMENTER PROPAGATION FORECAST					
Feh./Mar. 1968 LISTENER'S STANDARD TIME	ASIA (except Near East)	EUROPE, NEAR EAST \& AFRICA (N. of the Sahara)	AFRICA (S. of the Sahara)	SOUTH PACIFIC	LATIN AMERICA
$0000-0300$	25	$31(41,49)$	$41,60(49)$	$25,31(41)$	$49,60,90$
$0300-0600$	$25(41,60)$	31	31 (poor)	41,49	$49,60,90$
$0600-0900$	16,19	$19(25,16)$	19	31	31,49
$0900-1200$	16,19	$16,19(13)$	19	25 (p0or)	31
$1200-1500$	19 (poor)	$16,19(13)$	$16,19(25)$	25 (p0or)	$25(19)$
$1500-1800$	19,31	$25,31(49)$	$25,31,60$	19,16	31
$1800-2100$	19,25	25,31	31	16,19	$49,60,90$
$2100-2400$	19,25	25,31	$41,60(49)$	19,25	$49,60,90$

[^2]- If you're looking for new DX tertitory to conquer on that SW receiver, here is an introduction to what's probably the hottest utility DX band under the present sunspot conditions: the 13 MHz marine band.

Here one can find dozens of countries waiting to be logged, and the renowned ability of CW to bite through the noise where phone fails is indeed evident.

Recently, the author connected his old S-38B SW receiver to a pair of TV rabbit ears and went for a quickie tour of the band, which stretches from about 12.5 to 13.2 MHz . The result? Thirty countries in one evening! Now add a good dipole and a preselector for the band and imagine how the countries scored will mount up!

The only trick necessary is to be able to copy code. And since most of the signals here are taped marker signals, giving the stations' call letters repeatedly to ships at sea, code should not pose as much of a problem as might be imagined. Here is a sample of the marker signal used by many of the stations: $C Q C Q C Q ~ D E ~ J O U ~ J O U ~$ JOU QSX 8 MC K.

This roughly translates as "Calling all stations, from (DE) JOU (the coast station at

Nagasaki, Japan). We are listening for calls (QSX) on the 8 MHz band. Out." Some stations will use a series of Vs , or dots, or just the letters "DE", derived from the French word for "from."

Markers By The Hour. The marker signals are sent repeatedly, often for hours on end, with breaks for traffic (messages) from ships calling the station. Most coastal stations sport three-letter callsigns (ships usually have four), and sometimes a number follows the call letters.

QSLs from these stations are a little harder to collect than those of shortwave broadcasters. First, you must not repeat any message broadcast in actual traffic with another station (e.g. ship-to-shore). Marker signals can be repeated, for they contain no information other than the advertisement of facilities as they compete for traffic from ships.

Second, you must usually prepare a QSL card yourself which the station operator can quickly fill out and return.

Third, always include return postage. If you don't know the exact location of the station, other than its country of registry, address it C/O Ministry of Posts, Tele-

Everyone is familar with that speediest of passenger liners, the U.S.S. United States, yet many is the SWL who has never logged her or her sister ships. Most readily picked up by DXers along the Eastern Seaboard, the United States can be heard most anywhere. Shown here is her radioroom.

Lucky)

Coastal Station WMH in Baltimore is one of a series of stations oferated by the Radiomarine Corp. (see table below), WMH transmits on 12885 kHz and can be readily logged, given a little persistence and patience.

phones and Telegraphs in the country concerned. If this fails, try writing in care of that country's Navy.

Pep-Up Chart. With these pointers in mind, check the chart for a list of some of the stations in the 13 MHz band. Some frequencies are approximate and are marked by an X.

This can be your star! in the fascinating world of marine station DXing. After you gain familiarity with the $12-13 \mathrm{MHz}$ band,
there are other bands to try, too, with more of the same and perhaps some other new countries. If your receiver has an RF stage, give the 17 MHz band a try, or even the 22 MHz band. Otherwise, tune down between 8.5 and 9 MHz , or even lower to $6.2-6.5$ MHz .

The thing to remember is that if you ever get bored with standard SWBC DXing, there is fantastic and almost endless variety on these marine utility bands.

COASTAL STATION FREQUENCY CHART

$\left.\begin{array}{ccc}\begin{array}{c}\text { Frequency } \\ (\text { KHz })\end{array} & \text { Call } & \begin{array}{c}\text { Operator \& } \\ \text { Location }\end{array} \\ \hline 13123.5 & \text { WLO } & \begin{array}{c}\text { Mobileradio } \\ \text { Mobile, Ala. }\end{array} \\ 13114.5 & \text { KFS } & \begin{array}{c}\text { Mackay Radio } \\ \text { Palo Alto, Calif. } \\ \text { Royal Navy } \\ \text { Lascaris, Malta }\end{array} \\ 13110 \times & \text { GYR } & \begin{array}{c}\text { U.S. Navy } \\ \text { Londonderry, }\end{array} \\ 13110 \times & \text { NST } & \begin{array}{c}\text { N. Ireland } \\ \text { Government } \\ \text { Rugen, E. Germany }\end{array} \\ 13101 & \text { DHS } & \text { Government } \\ \text { Barranquilla, Colombia } \\ \text { Government } \\ \text { Nagasaki, Japan } \\ \text { Government Cub } \\ \text { Havana, Cuba }\end{array}\right\}$
$\left.\begin{array}{|cc|}\begin{array}{c}\text { Frequency } \\ \text { (kHz) }\end{array} & \text { Call } \\ \hline 13015 \times & \text { WAX } \\ 13002.5 & \text { KPH }\end{array} \begin{array}{c}\text { Operator \& } \\ \text { Lropical Radio Tel. } \\ \text { Hialeah, Fla. } \\ \text { Radiomarine Corp. }\end{array}\right\}$
(Continued on page 129)

By Charles D. Rakes

Lymidly
 Novel checker draws a picture of all about a transistor you'll ever want to know.

Dynamic Duo is a perfect name for our dual-trace transistor characteristic curve tracer. With this simple tester you can adjust and observe two $I_{c} / V_{c e}$ curves of the same transistor on a scope simultaneously. And from this dual trace you can determine $A C$ current gain $\left(H_{f e}\right)$, ideal base current for linear operation, and leakage current ($\mathrm{I}_{\text {con }}$). You can even match transistors for amplifier applications. Sound complicated? Not at all.

The techniques employed to obtain the two curves are not difficult to understand, as we'll see shortly. What's more, switching from $p n p$ to $n p n$ transistor types is accomplished simply by interchanging two program plugs.

Circuir Description. The simplified circuit diagram in Fig. 1 shows the unit in the pnp test position. With the power switch on, a negative voltage at the cathode of diodes D1, D5, D6, and D8 will produce a negative voltage at the collector and base of the transistor under test. The emitter-to-collector voltage follows a sine-wave variation (one half-cycle of 60 Hz); at the same time, the base voltage is limited early in the cycle to a fixed value determined by the forward voltage drop of diodes D5, D6, and D8.

The collector current is limited by R4, and the base current is adjustable with potentiometer R8 and limited by R6. Assuming both S2 and S3 are closed, diodes D9 and D10 isolate the base of the transistor from the positive voltage at the cathode of D3. Under these conditions the curve tracer will produce one $\mathrm{I}_{\mathrm{c}} / \mathrm{V}_{\mathrm{ce}}$ trace on an attached scope.

The second trace, as shown in the photos, is produced in the same way but during the remaining half-cycle of the $60-\mathrm{Hz}$ current. The base current during the second $I_{c} / V_{\text {ce }}$ curve is adjustable by potentiometer R7. Pushbutton switches are provided so that the base currents can be set and read individually. Since each base current is monitored on meter M1 for a half-cycle, the actual meter reading is doubled for a correct basecurrent reading.

Construction. The transistor tester is housed in a two-piece aluminum case measuring $31 / 2 \times 6 \times 8 \mathrm{in}$. The front of the tester can be arranged to suit the builder, but the author's layout worked well and can easily be followed from the photos. The 33 -terminal female socket (J7) provides most of the tie points required for component mounting (see Fig. 3).

Base-bias potentiometer R7 is connected

Dymaniellio

in series with switch S3, and S3 is located directly over R7. Similarly, base-bias potentiometer R8 is connected in series with switch S2, and S2 is located directly over R8. Both R7 and R8 are wired so that a clockwise rotation lowers the resistance. The two program plugs (PL1 and PL2) are wired using spaghetti-covered \#20 or 22 buss wire as shown in Fig. 2.

Scope Calibration. To set up your scope for use with our Dynamic Duo, the vertical gain should be calibrated by applying a 1 -volt peak-to-peak AC signal to the scope's vertical input, then adjusting the vertical gain for a 1 -in.-high pattern. The vertical gain is now set so a transistor base current of 10 milliamperes will result in a 1 -inch deflection. If the same procedure is followed, but the AC input reduced to 0.1 -volt peak-topeak and the vertical gain readjusted for a 1 -in.-high pattern, the scope is now calibrated so one milliampere of transistor base current causes a 1 -inch deflection.

The horizontal gain is adjusted by applying a 3 -volt peak-to-peak AC sjgnal to the scope's horizontal input and adjusting the horizontal amplifier gain for a 1 -in.-long trace. The scope is now set for a sensitivity of 3 volts per inch.

Using Dynamic Duo. Connect the tester to a scope calibrated as described, turn the base-bias potentiometers counterclockwise,

Fig. 2. The two 33-contact program plugs are wired as shown below. Plug PLI is for PNP; plug PL2, for NPN transistors.

PL2
and insert the appropriate program plug to match the types of transistors to be checked.

With three clip leads or a test socket, connect the transistor to the tester, press both pushbutton switches (S2 and S3) simultaneously, and observe the scope's trace. The horizontal component represents the AC voltage between the collector and emitter of the transistor, and the vertical component represents the transistor's leakage current ($\mathrm{I}_{\mathrm{coo}}$).

To adjust the tester for a dual trace, press the pushbutton switch located above the bias potentiometer labeled IB2 (R7 on schematic in Fig. 3). With this switch pressed, adjust the base-bias potentiometer labeled IB1 (R8) for the desired base current (multiply Ml's reading by 2 for actual current value) or until the desired trace is obtained. This sets up one $I_{c} / V_{c e}$ curve.

Next, press the pushbutton switch located above the bias potentiometer labeled IB1. With this switch pressed, adjust the base-bias potentiometer labeled IB2 for the desired base current (multiply M1's reading by 2 for actual current value) or until the desired trace is obtained. This sets up the second $I_{c} / V_{c e}$ trace. With both pushbutton switches simultaneously. A typical pnp dual characteristic curve is shown in the photo. The beta, or AC, gain and linear
(Continued on page 132)

Fig. 3. Schematic diagram of Dynamic Duo transistor characteristic curve tracer.

DYNAMIC-DUO PARTS LIST

D1, D2, D3, D4, D5, D6, D7, D8, D9, D10-$500-\mathrm{mA}, 200-\mathrm{PIV}$ silicon diode KRadio Shack 276-1126 or equiv.l
11, 12—\#47 lamp and sockef assembly (Radio Shack 272-1.535 or equiv.)
J1, J2, J3, J4, J5, J6-5-way binding posis (Radio Shack 274-736 or equiv.)
J7-Jones 33-contact socket for chassis mount M1-100-microampere, $21 / 2$ - in. $s q_{z}$ meter PL1, PL2-Jones 33-contact plug
R1, R2, R4-100-ohm, 1/2-watt resistor R3-22-ohm, $1 / 2$-watt resistor

R5, R6-5600-ohm, 1/2-watt resistor
R7, R8- 100,000 -ohm, linear-faper potentiometer
S1-S.p.s.f: loggle switch
S2, S3—Pushbutton switch, normally closed contects (Lafayette 34 C3402 or equiv.)
T1—Transformer: 117-VAC pri.; 12-VAC, 1.2-A center-tapped sec. (Radio Shack 273-1505 or equiv.)
1—31/2 $\times 6 \times 8$-in. aluminum chassis box Misc.-Line cord, wire, solder, screws, etc.

Internal layout of parts in Dynąmic Duo isn't critical and can be modified to suil. Terminals on sockef J7 provide majority of required tiepoints.

Nood

 Monitoring ElectronicallyBy K. C. Kirkbride

- Electronics will soon be able to tell whether you are a happy and gay soul or a mean old grouch. Because, as a result of a revolutionary three-year research program, a group of Honeywell Corp. space scientists have related brain waves to states of mind. In their experiments, they have monitored volunteer subjects who were asleep, awake, alert or drowsy. Extension of this research promises to allow almost any mood to be monitored.

It all started when Honeywell scientists at the Military Products Division in Minneapolis faced the fact that as our space projects became more complicated, the success of a mission could hinge on the frame of mind of our astronauts. And unfortunately, to date, we've had only inadequate means of determining human awareness. Neither verbal nor visual reports are dependable.

As any knowledgeable employer will tell you, a man can be asleep with his eyes wide open and alert with his eyes closed. So Honeywell men decided that if we don't find accurate checks on alertness of future astronauts as they venture out in space, we may find ourselves minus some astronauts as well. as some pretty nifty Tiffany-priced outerspace hardware.

It's All In The Mind. As we all know, the human brain consists of billions of cells wherein each action or reaction sets up bursts of waves in response to definife stimuli. Honleywell men, looking for a working premise, projected a series of electrical stimuli into the brain and watched the reaction. Could monitoring these induced brain-wave changes measure fluctuations of alertness? That was the multi-million dollar question.

To find out, they chose twenty-three subjects and placed them in a closet-type steel chamber, four feet wide, eight long and eight high; the chamber being used to screen out electrical interferences, movements, sounds, or smells that might distract or set up conflicting brain waves in the subjects. Silverdisc electrodes were then attached to the scalps of each volunteer.

A pattern of clicks were beamed at the subjects through a speaker mounted in each chamber. Reactions were then recorded over 48 -hour periods as the subjects slept, ate, were alert or drowsy. During this time, their reactions were monitored by both electrodes and a closed-circuit television camera.

Clicking Brain Potential. Brain potentials picked up by the electrodes were ampli-
(Continued on page 130)

What can our CB Rock Rater do for you? Plenty! For one thing, it'll measure the relative activity of your CB crystals. What does this mean to you? It means that you can quickly determine if a crystal isn't up to par. And this is important because with a low activity crystal in your rig's transmitter, it just can't put out for you like it should, and the net result is decreased operating range!

This nifty little package can also check your crystals for other defects, such as jumping frequency, which, in extreme cases can put you far enough off frequency to throw you right out of the CB band

Now about your receiver alignment. Are all the channels receiving dead on frequency where they should be? If not, our Rock Rater and a few CB transmit crystals lets you align the receiver yourself-and save the service fee.

Our multi-purpose CB test instrument is compact, measuring only $4 \times 21 / 8 \times 1 \frac{3}{8} \mathrm{in}$., and it won't clutter your operating area. Being inexpensive to build, it won't put a crimp in a tight budget either. And last but no means least, simple círcuitry makes it a snap to build, even for the beginner.

How Rock Rater Works. The heart of the operation of this device is a crystal controlled Colpitts oscillator. This oscillator, formed by transistor Q1 and its associated components, generates an RF signal output when an external CB crystal is inserted into the crystal socket. The frequency of the output signal is determined by the crystal frequency.

The amount of RF generated is, to a large extent, determined by the activity of the crystal under test. A weak crystal, one whose
activity is low, will not permit the oscillator to generate as much output as another higher activity crystal.

The output from the oscillator is applied to the center arm of selector switch S2 (see schematic). When the switch is placed in the lower position, the RF is rectified by the action of diode D1. It is then filtered by capacitors C4, C5 and calibration potentiometer R3. The resulting DC, which is proportional to the original RF , is then read on meter M1.

When the switch is in the upper position, the RF oscillator output is applied to the antenna jack through capacitor C6. This is the position used when the Rock Rater is used as a channel spotter or an alignment generator.

Mechanically Speaking. Although the exact layout of the Rock Rater is not critical, best results will be obtained, especially for the beginner, if the layout presented is followed. The more advanced builder should feel free to modify details to suit his needs. In any case, good high-frequency construction practices should be followed.

Start work on the case by drilling the proper size holes as shown in the drawings. The use of a T-square will aid in obtaining accurate placement of the various holes.

The cut-out for meter MI can easily be made with the use of a chassis punch of the proper size. If one is not available, a hand nibbler will do the job.

The mounting clip for the battery is made from the center spring clip from a size "AA" cell holder. This clip is easily removed from the battery holder by drilling out the retaining eyelets with a $.125-\mathrm{in}$. drill.

CB Rock Rater x 3

Finishing The Case. A strikingly professional appearance can be achieved, even by the beginner, by simply spray painting and lettering the case. The little additional time and effort involved will prove to be well worth the results. To prepare the case for painting, first remove all traces of dirt and oil from it. Any remaining dirt or oil will prevent the paint from adhering properly. The easiest way to clean it is to wash the case well with soap and water. After the case has dried, be sure to protect it from your own fingerprints.

When painting the case, remember to use very thin, light coats. The key to a good finish is to use a light touch. Allow each coat of paint to dry thoroughly before applying the next. For a really first-rate job, apply a primer coat to the bare metal first.

After the paint has dried hard, preferably overnight, it's time to apply the lettering. Whichever you use, whether dri-transfers or decals, be sure to follow the manufacturer's

To insure easy construction, lay out chassis box holes as dimensioned above. Then remove burrs and apply several coats of spray paint for a professional appearance.
directions exactly. A final coat or two of a clear plastic acrylic spray may then be applied to protect the lettering.

Electrical Construction. Most of the electrical components are mounted on a $13 / 4 \mathrm{x}$ $13 / 4-\mathrm{in}$. piece of perforated board. This board is mounted on the meter terminals as shown.

Begin the electrical construction by wiring

Schematic diagram of Rock Rater shows Colpitts oscillator whose output is fed to either meter MI for rock-rating or to antenna jack Jl for channel spotting.

ROCK RATER PARTS LIST

B1-9-volt transistor battery (Burgess 2 U6)
C1-0.05-uF, 12-VDC capacitor
C2-22-pF, 1000-VDC capacitor
C3, C6-68-pF, 1000-VDC capacitior
C4, C5-.01-uF, 200-VDC capacitor
D1-IN270 diode
11-RCA phono jack, single whole mounting (Lafayette 99C6234 or equiv.)
L1-\#28 enameled wire, 7 -turns close-wound on $1 / 4$-in. ferrite-funed cail form
L2—\#28 enameled wle, 3-furns slose-wound over ground end of LI
MI-I mA miniafure panel meter (Lafayette

99C5052 or equiv.)
Q1-2N3827 sllicon transistor
R1-22,000-ohm, $1 / 2$-wath resistor
R2- 330 -ohm, $1 / 2$-watl resistor
R3- 1000 -ohm, miniature potentiometer ILafayetle 99C61,42 or equiv.)
S1, S2-Miniature d.p.d.t. switch ILafayette 99 C 6126 of equiv.)
1-Crystal socket flafayetfe $42 \mathrm{CO9O1}$ or equiv.)
$1-4 \times 21 / 8 \times 15 / 6$-in. aluminum chassis box
Misc.-Wire, solder, nuts, screws, plastic tubing, perforated board, flea slips, lettering, spray paint, efc.
the board according to the schematic diagram. The general parts layout can be easily determined from the photos. Although transistor Q1 is a silicon transistor and is not easily damaged by heat, care should still be taken while soldering it into the circuit. This same care should be applied to diode D1, which is also easily damaged by excessive heat and mechanical actions that might

Majority of Rock Rater components are mounted on perf-board and wired following the schematic. Completed board assembly is then wired to chassis-mounted components and installed in chassis.
break its glass case.
Note that for proper operation, coil L2 should be wound over the "cold" end of coil L1. In this case we mean the end connected to the junction of capacitor C3 and coil L1.

Particular care should be taken when wiring to observe polarity of components as indicated on the schematic. This is especially true for transistor Q1 and battery B1.

After the circuitry on the perforated board has been wired, carefully check it over for errors against the schematic.

CRYSTAL SOCKET
Completed perf-board assembly is mounted in chassis by attaching it to the meter terminal screws. After wiring has been checked for errors and the battery installed, Rock Rater is ready for a trial run and calibration.

Completed Rock Rater has a professional appearance that lets it keep company with the snazziest of CB rigs. Here, it's befriending an all-channel Lafayette HB-525 CB rig. Don't they make a lovely couple?

Temporarily set the perforated board aside and install meter M1, switches S1, S2, the battery clip, and the crystal socket. Wire as you go along. Then mount the perforated board on the back of the meter terminals. Finish up the last of the interconnecting wiring between the board and the remainder of the components.
Testing and Calibration. Place selector switch S2 in the meter position. Adjust calibration potentiometer R3 to its minimum resistance position. Place a known good channel 9 transmit crystal, or other known good transmit crystal whose frequency is near the center of the band, in the crystal socket.

Turn Rock Rater on and tune coil L1 for a peak reading on the meter. Readjust the calibration potentiometer R3 as necessary to keep the meter from reading off scale as coil L 1 is being peaked.

Once the coil has been peaked, adjust the calibration potentiometer for a $3 / 4$-scale reading (0.75 mA) on the meter. If you are not able to peak the coil, or to obtain an upscale meter reading, carefully recheck your work for possible errors. If the meter reads down-scale, reverse the meter's terminal connections.

When Rock Rater has been adjusted to read about $3 / 4$-scale with a known good crystal, this becomes your "average" goot reading. Any crystal that fails to produce at least a $1 / 2$-scale (0.5 mA) reading is suspect. Likewise, a crystal that exhibits an erratic or unstable meter reading should be considered defective.

WMwnwn

> What to do when the junk box is packed with high-wattage resistors.
> Build the ...

By J. R. Squires

E Rare is the man who can lay claim to enough power resistors for his workbench or shop. For given sufficient power-handling capacity, such resistors come in handy for any number of uses-from dummy loads to power-supply bleeders to plain old voltage dividers.

Typically, the experimenter dips into the junk box for power resistors, and jumpers them together as needed. But all too often, the values aren't ideal and the resistors, running hot, end up charring the bench, test
leads, or a screwdriver handle or table top.
The Load Box presented here is the author's answer to power resistor problems. And though expensive to build if all new parts are used, variations on this design to suit individual requirements can be built using surplus or junk-box parts. The actual number of resistors and jacks used should be determined by individual requirements, since the unit presented here is what the author determined he wanted to fill his needs.

The prototype provides resistances from a

This is the schematic of the author's version of the load box; the string of power resistors, potentiometers, and series switches providing the ultimate in flexibility. At right, is the hookup employed in the knife-switch and monitoring meter circuits.

fraction of an ohm to more than 3700 ohms, with a power rating throughout in excess of 25 watts. Other features include built-in current-monitoring meter, fuses, and sufficient banana plug tie-points in the string of power resistors to provide a variety of series, series/parallel, and parallel connections.

As the schematic indicates, the number of interconnection possibilities is almost endless. What's more, the addition of four potentiometers in the series string makes the unit an
extremely versatile tool wherever power handling is needed.

Load Box Put-Together. The prototype has a three-pole double-throw knife switch mounted on the front panel. It was chosen because of its simplicity, current carrying capacity, reliability, and low contact resistance. Of course, a double-pole switch could be substituted if deemed adequate or the switch and associated circuit could be deleted altogether.

Nine binding posts are positioned on the

PARTS LIST
F1-1-amp fuse and holder
F2, F3- 10 -amp fuse and holder
J1-J22—Binding post (Radio Shack 274-736 or equiv.)
J23-J51—Banana jack
M1-1-A meter
R1-1-ohm, 25-wall poterifiometer
R2, R3-1-ohm, 25 -wath resistor
R4, R7, R10- $\mathbf{2 5}$-ohm, 25 -watt potentiometer
R5, R6- 5 -ohm, 25 -watt resistor
R8, R9-25-ohm, 25-watt resistor
R11, R12- 50 -ohm, 25 -watt resistor
R13, R14, R15, R16, R17-1000-ohm, 25-waH resistor
S1-2 $1 / 4$-in. sq., 1 deck, 15° shorting between position, 24 -pole, 10 -amp rotary switch (Daven 121-DM-24A or equiv.l
S2, S3, S4, S5-S.p.s.t. $10-\mathrm{amp}$ toggle switth (Radio Shack 275-1533 or equiv.)
S6-Triple-pole, double throw, 10 -omp knife switch
$1-8 \times 8 \times 10$-in. steel or aluminum cabinet Misc.-Wire, solder, knobs, hardware, etc.
front panel in direct relation to the screw terminals on the knife switch. These binding posts are wired directly to their respective knife-switch screw terminals with the exception of two, as shown in the schematic. These two binding posts have a fuse holder in series with their knife-switch terminals. This arrangement makes it possible to fuse the line being switched.

The main frame chassis is grounded at the top mounting screw holding the knife switch. All other taps and terminals are isolated from ground. The three vertical terminals at the far left of the front panel are both ends of the 21 -tap series of resistors and the center tap. The four toggle switches, S2 through $\mathbf{S} 5$, are also connected to the banana jacks on the rear panel as shown. This convenience enables the addition of any four external resistors which can be inserted into the circuit to modify total resistance. These plug-in resistors have the added feature that they can be quickly shorted out by their associated switch when no longer needed in the circuit.

The tap switch SI was mounted away from the front panel with four polystyrene rods in the author's model. The photographs illustrate the positioning and wiring of the components, though this will vary depending on the type of switch used. The rear panel is laid out as shown or can be modified or deleted as required. Bear in mind that the power resistors can be expected to get hot so don't dress wiring along, or in contact with, the resistor bodies.

Handy Meter. A 0 to 1000 milliamp meter is used in the Load Box to conveniently monitor current. Since the meter has an internal resistance of 0.1 ohm , using a 100 -ohm multiplier resistor (the resistance between taps 14 and 16), a 100 -ohm-per-volt meter with 100 -volt full-scale reading can be constructed. Using a $1000-\mathrm{ohm}$ multiplier (the resistance between taps 18 and 19) provides a 1000 -ohm-per-volt meter having 1000 -volt full-scale indication.

> All controls and major resistor string connections are accessible on front panel of author's version.
> Rear panel holds jacks J21
> through J 51.

Internal layout requires planning and careful construction to obtain good results.

Neither of the two voltmeter ranges described here are spectacular but they will serve in many applications. In addition, the 0 to 1000 meter can be shunted between the marked terminals J16 and J18 on the front panel to increase its range to 0 to 10 Amps . The shunt is made from a piece of $\# 21$ enameled copper wire $7 / 18-\mathrm{in}$. long strung between two single banana plugs. With the shunt plugged in, the ammeter scale reads 0 to $10 \mathrm{Amps} \pm 2 \mathrm{Amps}$.
Again, many variations in construction are possible. For example, if the builder doesn't require a built-in meter, provisions for an external VOM could be installed or the entire circuit eliminated.

By W. Krag Brotby, Technical Editor

SWLs

Low in cost, budget shortwave sets are also low in the one thing

 SWLs need most-gain. This six-buck soupup solves that problem.- There's no doubt that the inexpensive four- and five-tube superhet all-band receivers have made SWLing one of the country's most popular hobbies. Still, the inherent limits of one IF stage and no RF amplification can also prove one great big frustration. To solve this dilemma, some SWLs have gone the Q-multiplier route, while others have added a crystal or mechanical filter. Still others have put together a preselector or two, and the very well-heeled have turned to rigs in the $\$ 500$ category.

Addition of a Q-multiplier or a filter will improve selectivity but only at the expense of sorely needed gain. A preselector will provide more sensitivity and reduce image response but it won't improve selectivity much. A $\$ 500$ rig would take care of matters, but it would also claim more clams than most SWLs have around.
But there is a way out. And if you feel six bucks is a worthwhile investment in bringing home some rare ones (QSLs, that is), here's an answer just looking for your problem.
What we need is both more sensitivity and better selectivity-in other words, more plain old zonk. Unfortunately, zonk is just the thing the single IF stage found in most budget receivers simply can't provide. One tube can't provide enough' gain, and there aren't enough tuned circuits (IF transformers) to deliver decent selectivity.
Given the problems of a typical, inexpensive SWL rig, the answer comes in a little module sold by Lafayette Radio. It's an aluminum box measuring only $1 / 2 \times 1 / 2 \times 1$ in. but cram-packed with exciting stuff. It consists of two complete transistor IF stages, plus a crystal filter. Add the filter (not to mention two additional stages of IF

S9er for SWLs

Lafayette supplies its CFIF module complete with input transformer (above, leff); unit requires only a 6-VDC power source and it's rarin' to go. Cover-off view at left reveals relative complexity of module's internal circuitry.
gain and three additional tuned circuits) to your receiver's IF strip, and you'll get lots of DX-making zonk. On the author's hookup to an EICO "Space Ranger," the little goody added 55 dB gain and knocked bandwidth down to about $3.5 \mathrm{kHz}-\mathrm{an}$ appreciable improvement.

The module can be used with any radio with a $455-\mathrm{kHz}$ IF, whether for SWL or BCB DXing. Its small size makes it simple to install and the power requirements of 6 VDC at about 2 mA are easily fulfilled.

Construction. The first step is to determine where to mount the IF module. It should preferably be as close as possible to the receiver's last IF transformer in order to keep leads short. The module can be mounted in any position and either on top or bottom of the chassis.

The author placed the unit on the bottom edge of the chassis skirt, as shown in the photos, for easy access to the module's connecting pins. The module can be readily
attached with epoxy or other cement. The separate input transformer can be attached to the module or mounted separately. For ease of assembly, the author attached the input transformer to the module by carefully bending the connecting pins of both the transformer and the module so they could be soldered directly together. But bear in mind that the input transformer has a slug that can be reached only from the top and that must be accessible for final alignment. (In the author's case, this was accomplished through a hole drilled in the chassis.)
If the module cannot be conveniently located near the receiver's final IF transformer, use shielded cable to connect the input transformer. Otherwise, the receiver may actually go into oscillation.

Wiring The Module. The input transformer is wired to the receiver's last IF transformer. If you have a schematic of your rig it's easy to find. In any case, it's the transformer closest to the audio section. This

Author managed to tuck module, input transformer, and capacitor Cl along rear apron of his EICO Space Ranger; associated power supply (D1, C2, R2, R3) along one side. Module is ideally mounted as close as possible to receiver's last IF transformer.

transformer feeds the detector, which, in budget receivers is usually a 6 - or 12AV6.

As shown in the hookup schematic, the circuit is broken at the output of the final IF transformer. One side of the module's input transformer is then wired to the secondary of the receiver's IF transformer; the other side is grounded.

The output of the module bypasses the receiver's detector and is wired directly to the audio section, since the module already contains a detector. The most convenient place is to tap into the hot side of the receiver's volume control.

The partial schematic of a typical budget receiver shows where to connect the module, this hookup being virtually identical in all receivers. You can also locate the point by touching your finger to each of the three volume control taps in turn: the outside tap with the loud hum is the one you want.

If the distance between the module and the volume control isn't too great, just hook the module output (pin 7) to the hot side of the volume control. If it's a long run, better use shielded cable to prevent hum pickup. Add the .05 bypass capacitor to the input transformer as shown, then connect pins 8 and 9 of the module to ground.

Power Supply. The module requires 6 VDC at about 2 mA for best operation. If
your receiver has a 6 -volt heater supply (check on your schematic or with a voltmeter), construct the supply shown in power supply schematic A on a 4-lug terminal strip and mount where there's room. The negative side is grounded and the positive side is hooked to pins 6 and 10 of the module.

If your receiver uses 12 -volt tubes, construct the alternate supply (B) using an input voltage divider consisting of two 220 -ohm resistors in series, the .6 volts being taken from between them, as shown.

The AC/DC series-filament type radio requires a little more care and a schematic. The series-filament string usually has a 12AV6 at the "cold" end of the string-confirm this by checking the schematic. (The cold end means one side of the filament is grounded and the other goes to the next filament in the series string.)

If this is so on your rig, simply attach the voltage divider consisting of two 220 -ohm resistors across the 12AV6 filament connections and take 6 volts from between them, as shown in the third power supply schematic (C). If your set uses some other 12 -volt tube in this position, connections remain the same. Of course, if a tube with another filament rating is used here, another ratio for the divider resistors will have to be used.

Operation. Recheck all wiring and make

S9 for SWLs

Required 6-VDC to power module can be provided by $6-\mathrm{V}$ battery or one of three supplies shown above (see Parts List on preceding page for component values.)
sure the polarity of the power supply diode and filter capacitor are correct. If everything checks out, you are ready for a trial run.

Turning on the receiver, probably the first thing you'll notice is a hissing sound-that's from the convertor. You get so much gain that internal noise of the mixer tube will come through if no signal is present.

Tuning in a few stations will quickly show the tremendous increase in gain and the added selectivity. If you find that strong stations have a tendency to overload the IF strip and cause blocking or distortion, add the optional RF gain control shown in the pictorial. Again, either keep the leads quite short or use shielded cable for interconnection. Mount the control in any convenient location, preferably on the front panel where it's easy to reach.

Final Alignment. While odds are that the receiver will work pretty well right off, it should be aligned to get maximum benefit from the modification. Alignment can be accomplished with or without a signal generator.

With a generator, set the frequency to about 455 kHz and keep the RF output level quite low. Hook the generator's output to the module input transformer and hook a VOM (AC scale) to the speaker leads of the receiver. Tune the signal generator around 455 kHz until maximum signal gets through the module. This is the crystal filter's frequency, which isn't adjustable. Being careful not to detune the generator, transfer its output lead to the input of the receiver's first IF transformer. Reducing the signal generator's output level as needed, peak up all the IF transformers including the top slug of the module input transformer for maximum reading on the VOM.
If a generator isn't available, simply tune in a weak station whose signal is steady and free from fading. Using the VU meter (if your receiver has one) or a VOM (AC scale) hooked to the speaker leads of the receiver, peak all the IF transformers for maximum meter indication. Repeat the peaking procedure several times to make sure you're getting everything you can.

With the modification finished, a little further use of the receiver will soon convince you that the addition of this little crystal-filter-plus-IF module will give you more DXmaking zonk per buck than anything else going.

Another view of author's receiver, showing placement of module and power supply. Since no two receivers are alike, location of module will depend on chassis layout.

PICON, PICON, WHEREFORE ART THOU, PICON?

- How long has it been since you helped a little old lady across a busy street?

The Boy Scouts used to be noted for this kind of sincere, unselfish helpfulness (remember when one of Scouting's watchwords was "Do a good turn every day?"). This used to be a key function of ham radio, too, but a lot of hams have forgotten it. Some may never have learned it in the first place.

Just the other day I had lunch with a young fellow who works in an engineering lab of a leading electronics company. He's been an active ham for several years, but he never heard of this public-service function of ham radio! And he may be more typical than some of us realize.

For example, ask a dozen hams for the meaning of "PICON" and most of them probably won't even recognize that you're talking about ham radio. PICON, whicb used
to be on the lips of thousands of active hams across the nation, stands for Public Interest, Convenience Or Necessity. Those are the key words that describe the intended operation of the Amateur Radio Service. (I emphasize the word service, because that's the correct name and it's also what we're supposed to provide, when needed.)

When we stop operating in the public interest, convenience, or necessity, we may stop being hams-by government decree. This doesn't mean every one of us must devote all our operating time every day to handling traffic, rescuing drowning victims, or dispatching fire trucks. It does mean, however, that enough of us must provide public-service communications, when there is a genuine need for such activity, to help justify use of our frequencies by all hams.

Public-service communications probably

A police car with a Ham rig in it? Sure isl Officer John Annis, WAGPCY, of the California Highway Patrol, monitors 7255 kHz while performing his regular duties; this is the frequency used by the West Coast Amateur Radio Service net.

HAM TRAFFIC

will not do this all by itself. But it will help demonstrate to others that we hams have a sense of responsibility and are worth having around.

Service With A Smile. Fortunately, there still are some hams who take our responsibilities seriously. For example, a gang on the west coast, appropriately called the West Coast Amateur Radio Service, is doing its bit to perform some genuine public service. A friendly note from Ed Gribi, WB6IZF, offers the following rundown on this group's activities.

Members operate a net on 7255 kHz from 0800 to 1730 Pacific local time daily to provide "service to the public and other amateurs by assisting in emergencies, handling traffic, and facilitating contacts," Ed explained in his letter.

The net has been operating for four years now. In its ranks are some 370 regular members scattered from the state of Washington down into Mexico, and from Utah to maritime mobiles in the Pacific. There's a formal net session and roll call at noon daily to train members how to operate with efficiency, effectiveness, and discipline in the event of an emergency or disaster. Informal net operation is maintained the rest of the day, with base and mobile stations monitoring the frequency.

Ed says on a typical recent weekday, some 225 stations- 135 of them net membersused the frequency. Two priority and 14 routine messages were handled, 15 phone patches were arranged, and at least 100 informal communications were completed, either on or off the net frequency.

Among members is the California Highway Patrol, whose headquarters amateur station, W6CDY, is a charter nember of the West Coast Amateur Radio Service. The patrol has three SSB transceivers for coordinating official Patrol work with amateur communicators in emergencies. What's more, at least three members of the Patrol are hams involved in the net activities. They are Harold Samson, W6JBA, supervisor of the Patrol's electronic data processing section, and officers Jim Clark, WA6NSK, and John Annis, WA6PCY.

Samson recently received an outstanding performance award from the Patrol for helping set up a MARS (Military Affiliated Radio Service) operation for the Patıol. As for

Annis, he has another claim to fame-he has one of the Patrol's amateur SSB transceivers in his police cruiser! In fact, the next cop car you see with a 40 -meter whip just might be Officer John on patrol.

Direct Coupling. The 21 st and 19th centuries have now been direct coupled, electronically speaking, by a new machine designed to train radio operators for the U.S. Army. For though Uncle Sam's boys have the latest in single sideband and Teletype gear to handle much of their traffic, at least some of them must be able to work Morse Code if necessary. Sometimes fancier gear breaks down or can't get through noise or interference. Then it's CW to the rescue.

Thing is, the crew-cut boys on the drawing boards have decided the stern-faced code instructor in the radio classroom is no longer needed. Some lads at Sylvania have replaced him with an automatic machine for teaching Morse. There are two dozen training consoles in the setup, each wired to give individual instructions in how to handle the dots and dashes.

Needless to say, the whole ball of wax is controlled by an electronic computer!

Novice News . . . The Friendly Chirp Checkers, otherwise known as the FCC, have added nine new questions to the Novice class exam study material.

At the risk of being called a nasty old man, I'm going to give just the questions here. If you're studying for the Novice exam, you should be able to determine in a jiffy whether or not you know the answers. If you don't, back to the books, lad.

1. When is one-way communication permissible?
2. What is a Hertz? kiloHertz? megaHertz?
3. What are some correct ways to call and answer other amateurs stations via telegraphy?
4. What are some common Q signals and what purposes do they serve? What do QRA, QRM, QRN, QRS and QRT mean when transmitted as questions via telegraphy?
5. What important functions do diodes perform?
6. What units are used ta measure capacitance?
7. How are tránsistors made, used, and diagrammed? What are some common transistor parameters?
8. Why is impedance matching necessaly?
(Continued on page 134)

Make like a pro and troubleshoot the simple way with our easy to build self-contained solid-state signal injector.

- Almost anyone, with a little training, can become a troubleshooting expert if he's given a yard or two of test gear. But for those not fortunate to be blessed with several hundred (or thousand) dollars worth of test equipment, troubleshooting becomes a matter of brainwork.

Thing is, even the brain can't function if it has no information to go by. But feed

MINI-

 the best "computer" of all just a wee bit of information, such as which circuits are go and which are no-go, and the JECTOR brain can almost instantly point the way to the defective circuit.How to tell which circuit in a dead receiver, recorder, or amplifier is go or no-go? Simplest way is with our multipurpose signal injector.

A signal injector is a rather simple device-a'squarewave - producing multi-vibrator with a fundamental output frequency somewhere in the audio range. Because thè waveform is complex, either square or sawtooth, harmonics are produced well into the shortwave regions-as high as 30 MHz .
Place the output of the signal injector on the grid (or base) of an audio tube (or transistor), and you'll hear a somewhat distorted tone. Move the signal injector back to the IF amplifier and you'll still hear a tone because the injector is also producing output in the IF range. Move the injector further back to the RF input and again you'll hear the tone because the injector also has output in the RF spectrum.

Fault Finder. If somewhere along the line you fail to push the tone through the set, you have isolated the defective stage. As a result, you now have something to feed into the human computer to solve the problem.

Our ultra-handy Mini-jector shown in the photo is complete within a standard test probe: the multi-vibrator, battery, and power switch are all self-contained. Flip the power switch on, and you'll get a signal output in the audio band up to approxi-

MINI-JECTOR

mately 12 mHz . Unlike some commercial signal injectors, this one doesn't produce a growl that can be confused with radio noise or interference; the multi-purpose signal injector's output is a crisp tone with a fundamental frequency between 1 and 2 kHz .

Making Mini-jector. The injector is assembled in a Keystone type 1810 test probe kit. The kit comes complete with an outer plastic handle with a ${ }^{13 / 3} / 2-\mathrm{in}$. hole drilled at

The test probe kit contains all mechanical parts required for Mini-jector including probe, brass shield, matching perf-board section and bag of push-in terminals.

Circuit diagram of Mini-jector.

PARTS LIST

B1-1.5-volt size AAA battery IEveready 912 or equiv.)
C1, C2, C3-0.01-uF, 6-VDC capaclior
Q1, Q2-2N404 transistor (see lext)
R1; R3- 100,000 -ohm, 1/10-watt resistor
R2- 10,000 -ohm, 1/10-waft resistor
R4— 3300 -ohm, $1 / 10$-watt resistor
S1-Miniature switch (see text)
1-Alligator ground dip
1-Cell holder for AAA battery IKeystone 137 or equiv.)
1-Test probe kit (Keystone 1810 or equiv.) Misc-Wire, Solder, etc.
The Keystone test probe kit is avallable for $\$ 1.98$ (postage and handling included) from Tridac Electronics Corp., Box 313, Alden Manor Branch, Elmont, N.Y. 11003. Now York State residents add appropriate sales tax.

Components are mounted on perf-board as shown. Complesed assembly then slides into casing.
one end. The other end is open to receive the screw-mounted cap and test prod. Also supplied is a section of perf-board, a bag of push-in terminals and a brass shield. The shield is not used for this project. (If your local Keystone dealer doesn't stock the 1810 test probe kit, see the Parts List for a source of supply.)

The entire signal injector is assenibled on the perf-board. Note that one end of the perf-board has a staked terminal; this is the forward (test prod) end, and the terminal is used for the output connection to the test prod. Cut $1 / 4 \mathrm{in}$. off the back of the perfboard and mount a Keystone type 137 miniature cell holder (for AAA battery) in such a manner that the frame of the holder is exactly flush with the back of the perfboard.

Push-in Tiepoints. Except for the common battery negative-connection and the ground cable which use push-in terminals for tie points, all components are connected by simply passing their leads through holes in the perf-board, twisting, and soldering. Take care not to use excess heat when soldering the transistor leads.

Transistors Q1 and Q2 are the 2 N 404 type, but the low-cost Lafayette Radio type 19-4215 will work just as well. Space is at a premium so use $1 / 10-$ or $1 / 4$-watt resistors and miniature 75 - or $100-\mathrm{VDC}$ capacitors. Position Q2 as close as possible to the staked terminal and Q1 as close as possible to the battery (cell) holder.

When the perf-board assembly is completed, install power switch S1. This can be either a low-cost pushbutton switch, in which case you will have to hold the button
(Continued on page 129)

OUTPUT TRANSISTOR STOP-A-SHORT

- When building your own transistorized power amplifiers, like this one using a cake pan for heat sink and chassis, take a tip from manufacturers and mount a barrier terminal strip for the speaker connections. This will help prevent shorts which can damage or destroy the output transistors. The response time of transistors is faster than that of fuses, and this is one good way to take care of the problem.
-J.M. McKeenan

NO-COST VOLUME GETTER

- At parties, dances, or other get-togethers, more volume can be had from that little transistor radio without resorting to complicated solutions. Simply attach a cheer-leader type megaphone to the radio with rubber bands or tape as shown, with the megaphone's mouthpiece centered over the radio's speaker. The end result is double or triple the volume.
-Art Trauffer

SPEAKER PHASE REVERSER

- Here's a quick and easy way to flip the connections to the speakers in a stereo set-up. The photo shows two types of connectors that can be used in the speaker wiring; one is a standard. AC plug and socket, the other is an automotive type. Both types are un-polarized so that reveŕsing speaker phase can be accomplished by simply reversing one of the plugs.-J. Hancock

BASS-REFLEX REAR-SEAT AUTO SPEAKER

- When installing that rear-seat speaker in your car, mount the speaker on bushings as shown in the drawing. The bushings should be about $1 / 2$-in. long. This creates a port for the speaker's backwave, thereby reinforcing the bass. Another advantage is that the fragile speaker cone is less subject to damage from excessive air pressure created when the trunk lid is slammed shut.
—Albert E. Hart

[^3]

Two controls on side of Duo-Remote extension speaker allow adjustment of both the TV and remote speaker volume.

Do loud TV commercials take the pleasure out of your evening idiot-box viewing? Do you find extended lectures on sweaty armpits cause nausea? How about that rock singer with the booming voice who turns out to have a flea's whisper on TV, requiring a walk to the box to crank up the sound, and another walk to turn the sound level down when the M.C. comes back? Whatever the annoyance, it can be overcome with a remote TV speaker and remote volume controls placed next to your favorite armchair.

Adding a remote speaker and remote volume control for both the main TV speaker and the remote unit is an easy installation since virtually everything is supplied prewired in Lafayette Radio's Duo-Remote TV Speaker. As shown in the schematic, the Duo-Remote Speaker consists of all components inside the dotted line-and these are supplied pre-assembled in an attractive walnut-finished cabinet.

Control By The Twos. Note that two controls are provided: R1, which controls the level of the main TV speaker, and R2, which determines the remote speaker's sound level. R1 is a specially constructed potentiometer with a full off position-the sche-
matic, in fact, shows the wiper in the off position. When installed, R. 1 completely disconnects the TV speaker, substituting R1 and R2 as the load for the TV receiver's output transformer. Since R2 and its associated remote speaker are connected across R 1 , the TV sound output appears across R2, with the remote speaker level determined by the position of R2's wiper.

The Duo-Remote Speaker requires a 3 wire connection to the TV receiver's speaker circuit in order to obtain control over both the main and remote speaker level. For convenience and maximum flexibility-like allowing the TV receiver to be "pulled" for servicing-a plug and jack arrangement such as shown in the schematic is suggested.

Note that J1 is a special version of the standard 3 -circuit phone jack, having a through connection on the tip terminal. When connected as shown, removing the plug (thereby disconnecting the remote speaker) automatically restores the original TV speaker circuit. A further refinement as shown in the photos, is the use of a telephone type

First step is to remove one of the leads going to the speaker in the set.

Remote speaker jack can be mounted in one of the ventilation hales in back of set, or $3 / 8-i n$. hole can be drilled to suif.
jack and wall plug at the remote speaker location, allowing the remote speaker to be unhooked at its location during housecleaning, etc.

Doin' It. The first step is to pull the TV power plug and remove the back of the cabinet. Locate the two wires leading from the audio output transformer to the speaker and

Telephone extension jack is mounted on baseboard near desired location of remote unit.
disconnect one of them at the speaker terminal. Now install JI on the back of the television receiver. Generally, the back cover has a series of $3 / 8-\mathrm{in}$. ventilation holes and J1 can be installed directly in a handy one, with no drilling required.

If there are no ventilation holes, you will, of course, have to drill a $3 / 8-\mathrm{in}$. hole for J1 in any convenient location. If the back is metal, J1 should be insulated for safety by using a set of fiber shoulder washers between J 1 and the metal cover. After $\mathbf{J} 1$ is mounted, wire it up as shown in the schematic. Try to use the shortest possible leads and route them away from IF and RF circuits.

Now put the TV cover back and apply

Matching telephone plug connected to DuoRemote allows unit to be readily disconnected for housecleaning.
power. After the set warms up you should hear the program sound if no plug is in J1. If you don't hear the TV, better check for an error in wiring. If the sound is coming through, insert an unwired 3 -wire phone plug in J 1 ; the sound should be cut out. If it doesn't, check again for a wiring error.

Final Installation. If you want a quick-and-dirty finish, simply connect P1 to the existing Duo-Remote wiring as shown. Insert P1 to J1 and the installation is complete. However, since the wire supplied with the Duo-Remote unit is very thin and easily broken, a more permanent installation can

Decibel Decimator

be made by using standard \#18 or \#20 three-wire cable stapled to the moulding with an outlet plug at the speaker location.

Determine where the remote unit goes, then staple the 3 -wire cable to the moulding with a round-staple stapler (the type used by electricians or telephone installers). If you have a tackless wall-to-wall carpet installation, the wire can often be pressed into the space between the carpet and the moulding.

Plug in P1 at the TV end of the cable and install a telephone-type jack (four connections) at the seating area. Connect the three wires of the cable to three of the four telephone jack terminals and connect the match-

Wire up the jack on the back of the sel according to the schematic. The extension speaker, in the dotted lines, is pre-wired.

PARTS LIST

J1-3-conductor jack (Switcheraft type 13B or equiv.)
P1-3-conductor phone plug (Switcheraft type 267 or equiv.)
1—RC-TV Duo-Remote Speaker (Lafayette 99H4596)
1-4-contact wall-mount telephone plug and socket (see text)
Misc.-Wire, solder, staples, etc.

Decibel Decimator all hooked up and ready to go. With a little use, you'll find this inexpensive job's quite a step-saver.
ing plug to the cable from the Duo-Remote Speaker.

Usin' If. With P1 plugged into J1 and the telephone plug into the telephone jack, set the main speaker control on the DuoRemote to maximum volume (full clockwise) and the remote speaker control to off (counterclockwise). Turn on the TV receiver and set the TV sound slightly louder than normal-the volume can then be set to a comfortable level with the main speaker control on the Duo-Remote. To kill the main speaker from the Duo-Remote, simply rotate the main speaker control counterclockwise. The level at the remote speaker can be adjusted at any time-either with the main speaker on or off-to any desired volume with the remote speaker control. Now when your ears are assaulted by unwanted TV sounds, you can fight back with but a flick of the wrist.

Bigger Antenna Feeds There Aren't

\square Designed and built by Radiation Inc., the world's largest antenna feed is big as a two-story house and weighs in at $14,000 \mathrm{lbs}$. The feed is constructed with four outer VHF error horns located around a VHF sum horn, and it even sports a UHF sum horn in the center of the VHF job. Because of its multiple horns, the feed can provide four different t́ypes of polarization-vertical, horizontal, left and right, and circular. Its purpose is to gather maximum target information from a radar echo.

Intended for use with a $150-\mathrm{ft}$. detection and tracking antenna that is part of the nation's anti-missile defense program, the feed will be shipped to the South Pacific for permanent installation.

BY LEO G. SANDS, KOD1939

Valuable, up to the minute weather information is being broadcast by the U. S. Weather Bureau, and, it's available to anyone free of charge. The U. S. Weather Bureau has in operation 19 weather bureau stations operating on 162.55 MHz . Approximately 150 more are scheduled to be added in the near future to cover all coastal areas and cities of over 100,000 population. These FM radio stations broadcast weather information for mariners, motorists, aviators, boatmen, etc.
-The Weather Bureau's radar and radio station (KWO-35) in New York City is atop the RCA Building. Meteorologists watch the radar and give cloud-by-cloud reports. The station's broadcasts can be heard at least 60 miles away and one yachtsman said he could pick up the broadcasts when 140 miles out to sea.

Where? Weather broadcasts are transmitted on a channel adjacent to the VHF

Marine Public Correspondencé Channels, within the $150-174 \mathrm{MHz}$ mobile band, These are FM signals with $\pm 15 \mathrm{kHz}$ deviation as used by VHF/FM marine radiotelephones, instead of $\pm 5 \mathrm{kHz}$ used by the land mobile radio services.

You can't tune in these broadcasts with an FM broadcast receiver. In order to receive them, you must either have a fixedtuned VHF/FM monitor receiver, or pocket paging receiver that can be tuned to 162.55 MHz , or, you can use a converter with an AM BCB auto or home radio which then employs "slope detection" to demodulate the FM signals. Here is a breakdown of the various means that can be used to receive these Weather Bureau broadcasts.

VHF/FM Monitor Receivers. There are numerous VHF/FM receivers available on the market that can tune the $150-174 \mathrm{MHz}$ band. Some are available in kit form for less than $\$ 50$ or you can pay as much as

Weather Broadcast Receivers

\$200 for one completely assembled and ready to use.

Receivers are available which operate from $117 \mathrm{VAC}, 12 \mathrm{VDC}$, or either one. There are also portable receivers that operate from self-contained batteries and some operate from AC as well as batteries. The advantage of a tunable receiver is that it can not only monitor weather broadcasts, but police, fire, railroad, mobile telephone, business and various other radio services as well.

Fixed-tuned VHF/FM receivers are also available which operate from 117 VAC or 12 VDC , or both. In some cases only one channel is used. In others, a frontpanel switch enables selection of from two to six channels. These receivers are crystal controlled and a separate crystal (162.55 MHz for the weather bureau), is required for each channel you want to monitor.

Fixed-tuned receivers cost from approximately $\$ 75$ to about $\$ 250$. Realize that the more expensive receiver has additional fea-
tures, such as better sensitivity and higher stability. All fixed frequency monitor receivers are crystal controlled and some have an RF stage to provide increased sensitivity and a squelch circuit to cut out noise when not receiving signals.

There are also combination type monitor receivers. These receivers can use a crystal for a specific channel, such as the Weather Bureau broadcasts, and a tuning dial for tuning in other channels. A switch is provided to change from fixed frequency mode to tunable mode. Prices for these units start at less than $\$ 100$.

Portable Receivers. Until a short time ago, a pocket size VHF/FM portable receiver was very expensive. There is one now on the market for only $\$ 39.95$ which makes it inexpensive and easy to receive weather broadcasts.

There are expensive types of pocket paging receivers, similar to the type IBM service technicans use to receive their orders. These paging receivers contain a decoding

Sonar FR-103 VHF Sentry

Unimetrics FM Minlvor

Allied 2671 AM/FM Portable Communications Receiver

Radio Shack Realistlc Patrolman MW/VHF Receiver

A variety of receivers capable

 of picking up the $162.55-\mathrm{MHz}$ weather broadcasts are available within a price range to suit every budget. A sampling of these receivers is shown here.device which prevents the receiver from operating until a special coding signal activates it. This decoding device is not included in receivers for listening to Weather Bureau broadcasts or other communications channels.

These little paging receivers are characteristically very sensitive and selective, have no external antenna protruding and have a built-in squelch circuit that keeps the receiver quiet until a signal activates it. A crystal, of course, is used to control frequency and self-contained batteries are utilized for power.

Available Porket Portable. One of the newest pocket portable receivers that can be used for tuning in weather bureau broadcasts is the Sonar Sentry. It's a dual purpose radio, operable on the AM broadcast band or, as a fixed-frequency single- or dualchannel VHF receiver. In the VHF mode, two crystals can be installed, one for receiving the Weather Bureau and the other for some additional channel.

U.S. WEATHER BUREAU STATIONS

Location	Call Letters	Operational
Atlantic City	KHB38	During 1968
Boston	KHB35	By January, 1968
Charleston	KHB29	By January, 1968
Chicago	KW039	Now
Corpus Christi	KHB41	By January, 1968
Galveston	KHB40	By January, 1968
Hartford	KHB47	During 1968
Honolulu	кна99	
Jacksonville	KHB39	By January, 1968
Kansas City	KIB77	Now
Lake Charles	KHB42	By January, 1968
Los Angeles	KW037	By January, 1968
Miami	KHB34	Now
New Orleans	KHB43	By January, 1968
New York	KW035	Now
Norfolk	кНв37	During 1968
San Francisco	KHB49	Now
Suitland (Md.)	KHB36	By January, 1968
Tampa	KHB32	By January, 1968

The Sentry uses a telescoping whip as an antenna which extends to about 18 inches. Though it is not a true FM receiver and has
(Continued on page 128)

> AMPHENOL MODEL 870 Field Effect Transistor Portable Voltohmmeter

The service grade VTVM has two outstanding defects. First, it is not portableeven with a battery power supply the relatively heavy current drain of tube circuits will result in run-down batteries just when you need the meter most. Second, the VTVM's lowest range is about 1 -volt full scale-perhaps 0.5 volt if you have a late model. Therefore, the average experimenter and technician has always needed an ACVTVM with sensitivity down to 1 millivolt to round out the test bench.

But with the advent of the FET (field effect transistor), it became possible to design around the basic VTVM faults, and a modern FETVM, such as the Amphenol 870 Field Effect Transistor Voltohmmeter, combines the best advantages of the VTVM with portability and low-voltage sensitivity. In fact, the Amphenol FETVM provides the performance of two meters-the VTVM and the AC-VTVM-in one instrument.

Fixed Input Z. Unlike transistorized VOMs with input impedances which, though high, still vary depending on the particular range in use, the Amphenol 870 has a fixed input impedance regardless of the range in use. For DC measurements, the input impedance is 10.6 megohms. For AC ranges from 10 mV to 1 V , the input impedance is 10 megohms shunted by 31 pF . For AC ranges from 3 V to 300 V , the input impe-
dance is still 10 megohms but the shunt capacity is only 20 pF .

Similar to the VTVM, the FETVM provides for measuring DC volts, AC volts, and resistance. Nine DC ranges provide fullscale measurement for 0.1 to 1000 volts using $1-3$ decading ($0.1,0.3,1$, etc.) Nine AC ranges provide full-scale measurement from .01 (10 millivolts) to 300 volts.

Six ranges from Rxl to Rxl-megohm provide resistance measurements from 10 ohms to 10 megohms center-scale.

Of particular interest to the audio experimenter and technician is the decibel range calibrated to the AC voltage ranges, with 1 VAC equal to 0 dB . The dB ranges decade down to $-40 \mathrm{~dB}(.01 \mathrm{~V})$ and up to +50 dB $(300 \mathrm{~V})$. The associated dB meter scale conforms to the standard of 1 mW in 600 ohms.

Not including the dB scale, the meter face has but three highly legible scales. The ohms scale is a very bright, almost three-dimensional, red. Two linear black scales are all that's used for all AC and DC ranges. There is also a center-scale mark for zero-center pointer positioning though there is no calibrated zero-center scale.

Just as with the latest VTVMs, the FETVM utilizes a single probe for all func-tions-the AC-ohms/DC switch is built into the probe. The standard zero-adjust and ohms-adjust controls are also provided.

Testing . . . Testing . . . As far as accuracy is concerned, the Amphenol 870 checked out its rated specifications of 2 percent of full-scale DC, 3 percent of full-scale AC. For DC measurements, the zero-set adjustment held within $1 / 4$ of a scale division

With cover removed, Amphenol FETVM can be used conveniently in either vertical or horizontal positions.
(negligible) for all DC voltage ranges. The AC zero set is automatic (there is no front panel adjustment) and, it too, is held on zero for all AC ranges.

While both the zero- and infinite-ohms adjustment hold with reasonable accuracy for all resistance ranges, there is no correlation between the ohms and DC zero-set control, and the user must readjust the control when switching between the DC and resistance functions.

The Amphenol 870 FETVM comes complete in a vinyl-covered wood case. The front panel, which contains a storage compartment for the test probe, swings up when the meter is in a horizontal position, or it can be re-

Rear apron of FETVM contains 10 batteries and coarse zero adjusi control accessible through hole in rear cover.

Simplifed circuit of Ámphenol FETVM DC circuit. Note use of low-pass filter to remove AC from DC measurements.
moved for both vertical and horizontal viewing. A small swing-out bracket on the bottom of the case permits the meter to be tilted at a slight angle.

How It Works. The heart of the instrument is the FET, which is the input amplifier for both the AC and DC functions. Unlike the usual transistor, which has a relatively low impedance even when connected in the Darlington configuration, the FET has an input impedance equal to that of vacuum tubes -up around 100 megohms.

If the input voltage divider totals 10 meg ohms, the connection of the FET's $100-$ megohm parallel load will obviously have no effect on the input impedance as the load represented by the FET is at least 10 times greater than that of the voltage divider. (When two resistors are connected in parallel and one is ten times the value of the other,
the larger resistor has no effective relation to the total resistance.)

The output of the FET amplifier is then fed to a transistor booster amplifier/impedance invertor or a meter amplifier.

The Circuit. Have a look at the simplified schematic of the DC circuit. A minute voltage is tapped off the input voltage divider and fed to a low pass filter which removes most of any AC component which might be present in the DC circuit being, measured. This allows DC to be measured in the presence of a $60-\mathrm{Hz}$ voltage 40 dB greater than the full scale value of the DC range. The low pass filter output is then passed to the FET amplifier and on to the meter amplifier.

The AC circuit is somewhat different from the DC circuit as can be seen in the second schematic. Here, instead of the applied volt-
(Continued on page 108)

EXPERIENCE IS SIILL YOUR BEST TEACHER

That is why NRI has invested more in Professional Lab Equipment than all other home-study schools combined. It makes training at home in Electronics fast and fascinating. Your hands are trained as well as your head.

You get more for your money from NRI
 - more value, more solid experience

 so essential to careers in Electronics. NRI's pioneering "discovery" method Is the result of more than half a century of simplifying, organizing, dramatizing subject matter. In each of NRI's major courses you learn by doing, You demonstrate theory you read in "bite-size" texts programmed with NRI designed-for-learning professional lab equipment. Electronics comes alive in a unique, fascinating way. You'll take pleasure in evidence you can feel and touch of Increasing skills in Electronics, as you introduce defects into circuits you build, per: form experiments, discover the "why" of circuitry and equipment operation.Almost without realizing it, the NRI discovery method gives you the professional's most valuable tool-practical experience. You learn maintenance, installation, construction and trouble-shooting of Electronic circuits of any description. Whether your chosen field is Indus. trial Electronics, Communications or TV-Radio Servicing, NRI prepares you quickly to be employable in this booming field or to earn extra money in your spare time or have your own full-time business. And you start out with training equivalent to months-even years -of on-the-job training.

NRI Has Trained More Men for Electronics Than Any Other School - By actual count, the number of individ-

 uals who have enrolled for Electronics with NRI could easily populate a city the size of New Orleans or Indianapolis. Over three-quarters of a million have enrolled with NRI since 1914. How well NRI training has proved its value is evident from the thousands of letters we recelve from graduates. Letters like those excerpted below. Take the first step to a rewarding new career today. Mail the postage-free card. No obligation. No salesman will call. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D.C. 20016.
L. V. Lynch, Louisvitle, Ky., was a factory worker with American Tobacco Co.. now he's an Electronics Technician whth the same firm. 'I don't see how the NRI way of teaching could be improved."

Don House. Lubbock. Tex., went into his own Servicing business six months after completing NRI training. This former clothes salesman just bought a new house and reports, "I look forward to making twice as much money as I would have in my former work."

G. L. Roberts. Champaign, IIt., is Senlor Tech. nician at the U. of Iltinois Coordinated Science Laboratory. In two years he received five pay raises. Says Roberts. "ll attribute my pres. ent position to NRI training."
 Ronald L. Ritter of Eatontown. N.J., received a promotion before finishing the NRI Communication course, scoring one of the highest grades in Army proficlency tests. He works with the U.S. Army Electronics Lab, Ft. Monmouth, N.J. "Through NRI, I know I can handle a job of responsibility."
approved under new gi bill. If you served sínce January 31, 1955, or are in service, check GI line on postage-free card.

COLOR TV CIRCUITRY COMES ALIVE

as you bulld, stage-by-stage, the only custom Color-TV engineered for training. You grasp a professlonal understanding of all color circults through logical demonstrations never before presented. The TV-Radio Servicing course includes your choice of black and white or color training equipment.

COMMUNICATIONS EXPERIENCE

comparable to many months on the job is yours as you build and use a VTVM with solld-state power supply, perform experiments on transmission line and antenna systems and build and work with an operating, phone-cw, 30 -watt transmitter suitable for use on the 80 -meter amateur band. Again, no other home-study school offers this equipment. You pass your FCC exams-or get your money back.

COMPETENT TECHNICAL ABILITY

can be instantly demonstrated by you on completing the NRI course in Industrial Electronics. As you learn, you actually buikd and use your own motor control circuits, telemetering devices and even digital computer circuits which you program to solve simple problems. All major NRI courses include use of transis. tors, solid-state devices, printed circults.

CB-AMATEUR RADIOSHORTWAVE RADIO

130. Bone up on CB with the latest Sams books. Titles range from "ABC's of CB Radio" to "99 Ways to Improve your CB Radio." So Circle 130 and get the facts from Sams. t 101. If It's a CB product, chances are International Crystal has it listed in their colorful catalog. Whether kit or wired, accessory or test gear, this CB-oriented company can be relled on to fill the bill.
131. If a rugged low-cost business/ industrial two-way radio is what you've been looking for, be sure to send for the brochure on E. F. Johnson Co.'s brand new Messenger "202."
132. Squires-Sanders would like you to know about their CB transcelvers, the " 23 'er" and the new "S5S." Also. CB accessories that add versatility to their 5 -watters.
133. A long-time builder of ham equipment. Hallicraffers will send you lots of info on ham. CB and commerclal radio equipment.
t129. Boy, oh boy-if you want to read about a flock of CB winners, get your hands on Lafayette's new 1968 catalog. Lafayerte has CB sets for all pocketbooks.
134. Discover the most Inexpensive CB mobile, Citi-Fone II by MultiElmac Company. Get the facts plus other CB product data before you buy.
135. Get your copy of Amphenol's "User's Guide to CB Radio"-18 pages packed with CB know-how and chit-chat. Also, Amphenol will let you know what's new on their product line.
136. Going CB? Then go CB Center of America, Get their catalog and discover the big bonus offered with each major product-serves all 50 states.
137. Want a deluxe CB base station? Then get the specs on Train's all new Titan II-it's the SSB/AM rig you've been walting forl
138. Pep-up your CB rig's performance with Turner's $\mathrm{M}+2$ mobile microphonc. Get complete spec sheets and data on other Turner mikes.
139. Hy-Gain's new CB antenna catalog is packed full of useful informa. tion and product data that every CBer should know. Get a copy.
140. Get the scoop on VersaTrontes ${ }^{\prime}$ Versa-Tenna with instant magnetic mounting. Antenna models available for CBers, hams and mobile units from 27 MHz to 1000 MHz .
141. Hams, CBers, experimenters! World Radio Labs 1968 catalog is a bargain hunter's delight. Get your copy-it's frec.
142. Get the full story on Polytronics Laboratories' latest CB entry -Carry-Comm. Full 5-watts, great for mobile, base or portable use. Works on 12 VDC or 117 VAC.
143. You can get increased CB range and clarity using the "Cobra" transceiver with speech compressor-receiver sensitivity is excellent. Catalog sheet will be mailed by B\&K Division of Dynascan Corporation.
144. A catalog for CBers, hams and experimenters, with outstanding val ues. Terrific buys on Grove Electronics' antennas, mikes and accessories.

ELECTRONIC PARTS

t1. Allied's catalog is so widely used as a reference book, that it's regarded as a standard by people in the electronics Industry. Don't you have the 1968 Alled Radio catalog? The surprising thing is that it's free!
t2. The new 1968 Edition of Lafayette's catalog features sections on stereo hi-fi, CB, ham gear, test equipment, cameras, optics, tools and much more. Get your copy today.
t102. Before you buy your next xtal, get ahold of Sentry's 1968 catalog. Sentry lists the best in precision quartz crystals and communications goodies. Check of 102 now!
tr8. Get it now! John Meshna, Jr.'s new 46-page catalog is jam packed with surplus buys-surplus radios, new parts, computer parts, etc.
23. No electronics bargain hunter should be caught without the 1968 copy of Radlo Shack's catalog. Some equipment and kit offers are so low, they look like misprints. Buying is believing.
5. Edmund Scientific's new catalog contains over 4000 products that embrace many interests and fields. It's a 148-page buyers' guide for Science Fair fans,
106. With 70 million TV and 240 million radios somebody somewhere will need a vacuum tube replacement at the rate of one a secondl Get Universal Tube Co.'s Troubleshooting Chart and facts on their \$! flat rato per tube.
*4. Olson's catalog is a mult colored newspaper that's packed with more bargalns than a phone book has names. Don't believe us? Get a copy. \star 7. Before you build from scratch check the Fair Radio Sales latest catalog for electronic gear that can be modified to your needs. Fair way to save cash.
*6. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest eight-page flyer listing the latest in available merchandise, including a giant $\$ 1$ special sale.
10. Burstein-Applebee offers a new giant catalog containing 100 s of big pages crammed with savings including hundreds of bargalns on hi-fi klts, power tools, tubes, and parts.
t11. Now available from EDI (Electronic Distributors, Inc.): a catalog containing hundreds of electronic items. EDI will be happy to place you on their mailing list.
120. Tab's new electronics parts catalog is now off the press and you're welcome to have a copy. Some of Tab's bargains and odd-ball items are unbelievable offers.
117. Harried by the high cost of parts for projects? Examine Bigelow's 13th Anniversary catalog packed with "Lucky 13 " speclals.

ELECTRONIC PRODUCTS

128. If you can hammer a nail and miss your thumb, you can as semble a Schober organ. To prove the point, Schober will send you their catalog and a 7 -in. disc recording.
129. Delta Products new capactive discharge ignition system in kit form will pep up your car. Designed to cut gas costs and reduce point and plug wear. Get Delta's details in fullcolor literature.
*42. Here's a colorful 108-page catalog containing a wide assortment of electronic kits. You'll find something for any interest, any budget. And Heath Co, will happily send you a copy.
*44. Get your copy of E/CO's colorful 36 -page catalog on 200 "best buys" products. Ham radio, CB, hifi, test gear, both wired and kit, are illustrated.

* 125. Need TV camèra kit, touch control lamp, hi-fi component, test unit or shop gear? Then you need Conar's latest catalog. Born from NRI, Conar has become a major supplier of electronics hobbyist parts.

66. Try instant lettering to mark control panels and component paŕts. Datak's booklets and sample show this easy dry transfer method.
67. Seco offers a line of specialized and standard test equipment that's ideal for the home experimenter and pro. Get specs and prices today.

SCHOOLS AND EDUCATIONAL

t61. ICS (lnternational Correspondence Schools) wants to send you a 64 -page booklet on the most often asked questions on preparing for an electronics career. You also get "How to Succeed" and a sample ICS lesson.
-74. A 40-page illustrated book on "How To Succeed In. Electronics" and a 24 -page book on "How to Get a Commercial FCC License" are yours for the asking from Cleveland Institute of Electronics.
114. Prepare for tomorrow by studying at home with Technical Training International. Get the facts today on how you can step up in your present job.
59. For a complete rundown on curriculum, lesson outlines. and full details from a leading electronlc school, ask for this brochure from the Indiana Home Study Institute.
105. Get the low-down on the latest in educational electronic kits from Trans-Tek. Build light dimmers, amplifiers, metronomes, and many more. Trans-Tek helps you to learn while building.
*3. Get all the facts on Progressive Edu-Kits Home Radio Course. Build 20 radlos and electronic circuits; parts, tools and instructions come with course.

HI-FI/AUDIO

124. Now, Sonotone offers you young ideas in microphone use in their new catalog. Mikes for talk sessions, swinging combos, home recording, PA systems and many more uses.
125. Always a leader, H. H. Scolt Introduces a new concept in stereo console catalogs. The informationpacked 1968 Stereo Guide and catalog are required reading for audio fans.
126. Write the specs for an ideal preamp and amp, and you've spelled out Dynaco's stereo 120 amp and PAS-3X preamp. So why not get all the facts from Dynaco!
127. Kenwood puts it right on the line. The all-new Kenwood stereo-FM receivers are described in a colorful 16-page booklet complete with easy-to-read-and-compare spec data. Get your copy today!
128. Acoustic Research would like to send you literature on their speaker systems and turntable. It's "must have" literature before you buy.
129. Let Elpa send you "The Record Omibook." It's a great buy and Elpa wants you to have it free. Your records will thank you when the mailman delivers it.
130. Garrard's Comparator Guide clues you in on the new Synchro-Lab turntable/changer series. Discover how Garrard locks on to the correct disc speed.
131. Mikes, speakers, amps, re-ceivers-you name it, Electro-Voice makes it and makes it good. Get the straight poop from $E \cdot V$ today.
132. Empire has made exceptional advances in speaker cabinet design you should read about. Also, Em: pire's successes in the turmtable and cartildge fields are worth discovering.
133. 12 pages of Sherwood receivers, tuners, amplifiers, speaker systems, and cabinetry make up a colorful booklet every hi-fi bug should see.
134. Confused about stereo? Want to beat the high cost of hi-fi without compromising on the results? Then you need the new 24 -page catalog by Jensen Manufacturing.
135. Get the inside info on why Telex/Acoustech's solld-state amplifiers are the rage of the experts. Colorful brochure answers all your questions.

TAPE RECORDERS AND TAPE

123. Yours for the asking-Elpa's new "The Tape Recording Omnibook." 16 jam-packed pages on facts and tips you should know about pefore you buy a tape recorder.
124. All the facis about Concord Electronics Corp. tape recorders are yours for the asking in a free book. let. Portable, battery operated to fourtrack, fully transistorized stereos cover every recording need.
125. 'Everybody's Tape Recording Handbook" is the title of a booklet that Sarkes-Tarzian will send you. It's 24 -pages jam-packed with Info for the home recording enthusiast. Includes a valuable table of recording times for various tapes.
126. "All the Best from Sony" is an 8-page booklet describing Sony-Superscope products-tape recorders, microphones, tape and accessories. Get a copy before you buyl
127. If you are a scrious tape audiophile, you will be interested in the all new Viking/Telex line of quality lape recorders.

HI-FI ACCESSORIES

112. Telex would like you to know about their improved Serenata Head-set-and their entire line of quatity stereo headsets.
113. Swinging to hi-f stereo headsets? Then get your copy of Superez Electronics' 16 -page catalog featuring a large selection of quality headsets.
114. You can't hear FM stereo unless your FM antenna can pull ' em in. Learn more and discover what's available from Finco's 6-payer "Third Uho mensional Sound."

10015

*78. Need pliers to hold, bend or cut fine wires? Check Xcellse's new line of miniatures shown in Catalog 166 along with a complete selection of regular pllers and smips.
118. Secure coax cables, speaker wires, phone wires, etc., with Arrow staple gun tackers. 3 models for wires and cables from $3 / 16^{\prime \prime}$ to $1 / 2^{\prime \prime}$ dia Get fact-full Arrow literature.

TELEVISION

*70. Need a new TV set? Then assemble a Heath TV kit. Heath has all sizes. B\&W and color, portable and fixed. Why not build, the next IV you watch?
127. National Schools will help you learn all about color TV as you assemble their $25-\mathrm{in}$. color TV kit. Just one of Narional's many exciting and rewarding courses.
97. Interesting, neipful brochures describing the TV antenna discovery of the decade-the log periodic antenna for VHF and UHF.TV, and FM-sterco. Get it from JFD Elec. tronics Corporation.
RADIO-TV EXPERIMENTER
Dept. 268
505 Park Avenue
New York, N . Y . 10022

$\boxed{\triangle A B C H E C K}$

Continued from page 101

things, this method provides for the very low .01 V range and 3 percent accuracy between 50 and $50,000 \mathrm{~Hz}$. And it's this range that effectively makes the Amphenol 870 a combined FETVM and an AC-FETVM.

Summing Up. Within the limitation of the 300 V maximum AC range, the Amphenol 870 FETVM can be considered as a substitute for both a standard VTVM and an AC-VTVM, realizing the advantages of portability and price since the cost of the 870 is less than that of the two instruments it replaces. Also, while the low-voltage AC ranges

FETVM AC circuitry employs only two voltage divislons for input voltage to keep signal level to FET high.
age appearing across the normal voltage divider, the input voltage is divided only twice for a high and low range. One reason for this is to provide a high-level signal to the FET in order to prevent internal noise from interfering with very low voltage measurements.

The output of the two-step divider is then fed to the impedance invertor which consists of the FET and its associated transistor amplifier. The relatively high level output of the impedance invertor is now fed to a voltage divider where the voltage is tapped off for the meter amplifier. While at first glance this might appear to be the hard way of doing

Resistance measuring circuit of FETVM

 is conventional providing six ranges to read from 10 ohms to 10 megohms center scale.are particularly useful in audio service work, the very-low-voltage DC range of 0.1 V fullscale makes the instrument exceptionally useful for transistor servicing where voltages in the range of 0.1 to 0.5 volt are the rule rather than the exception.

The Amphenol 870 FETVM is priced at $\$ 99.95$ including the case, probe and batteries. For more information write to the Amphenol Distributor Div., Amphenol Corp., Dept. DF, 2875 S. 25 th Ave., Broadview, Ill. 60153.

As substitute for both VTVM and AC-VTVM, the Amphenol FETVM provides the user with a substantial number of useful features of a reasonable cost.

Volume 49, No. 1

Abstract

An up-to-date Broadcasting Directory of North American AM, FM and TV Stations, including a Special Section on World-Wide Shortwave Stations

In this issue of White's Radio Log we have included the following listings: U.S. AM Stations by Frequency, Canadian AM Stations by Frequency, U.S. Television Stations by States, Canadian Televisiòn Stations by Cities, and World-Wide Shortwave Stations.

In Our Next Issue, April-May, 1968, the Log will contain the following listings: U.S. AM Stations by Location, U.S. FM Stations by States, Canadian AM Stations by Location, Canadian FM Stations by Location, and an expanded Shortwave Section. The shortwave listings are always completely revised in each issue of Log to insure 100 percent up-to-date and accurate information.

In the June-July, 1968 issue of Radio-TV Experimenter, the Log will contain the
following listings: U.S. AM Stations by Call Letters, U.S. FM Stations by Call Letters, Canadian AM Stations by Call Letters, Canadian FM Stations by Call Letters, and an expanded World-Wide Shortwave Section.

Therefore, in any three consecutive 1968 issues of Radio-TV Experimenter magazine, you will have a complete cross-reference listings of White's Radio Log that is always up-to-date. The three consecutive issues are a complete volume of White's Radio Log that offers up to the minute listings that are not to be found in any otber magazine or book. If you are a broadcast band DX'er, FM station logger, like to photograph distant TV test patterns, or tune the shortwave bands, you will find the new White's Radio Log format an unbeatable reference.

QUICK REFERENCE INDEX

U.S. AM Stations by Frequency 110
Canadian AM Stations by Frequency 120
U.S. Television Stations by States 121
Canadian Television Stations by Cities 124
World-Wide Shortwave Stations 125

U.S. AM Stations by Frequency

U. S. stations ilsted alphabetleally by states within groups. Abbreviations: $\mathbf{k H z}$, frequency in kliocycles: W.P., nower in watts; d, operates dayilme only; n, operates nighttime only. Wave length is given in meters. Listing indieates stations on the alr on October 1. 1967

hHz Wave Length W.P.

 $540=555.5$KVIP Redding, Callf. KFMB San Diego, Callf.

5000
Fla. 50000 d WDAK Columbus, Ga, 5000 KWMT Ft. Dodge, low K NOE Monroe, La. WDMV Pocomoke City, Md. 5000 WLIX Islifp. N.J
WETC Wendell-Zebulon
waro Canonsburg, Pa. WYNN Florence, S.C. WDXN Clarksville, Tenn. WFIC Rlchlands, Va.

550-545.1

KENI Anehorage, Alaska KAFY Bakers Alt KAFY Bakersficld, Callif. WAYR Craig. Colo. WGGA Grando Park, Fla. WGGA Gainesvilio. Ga. K AVP Walfuku Hawall WCBI Solina. Kans. KCB Columbus, Miss. KBOWt Louls, Mo. KBOW Butte, Mont. WGR Buffalo, N.Y. KFYR BIsmarek. N.C. WKRC CIncinnati, Onio GOAC Corvinnatl, Onio WHLM Bloomsburg. Pa . WPAB Ponce, P.R. WXTR Pawtuekit, R. KCRS MIdland, R.I. KTSA San Antonio. WDEV Waterbury. Vex. WSVA Harrisonlours, KARI Blaine, Wash. WSAU Wausau, Wls.

560—535.4

woof Dothan, Ala. KYM Yuma, Ariz. KSFO San Fran.. Calif。 KLZ Denver, Colo.
WQAM Mami, Fia. WQAM Miami. Fia. WIND Chicago, III. WMIK Middlosboro, Ky. WGAN Portland, Mialn WFRB Frostburg, Md. WHYN Springfeld, Mass. WQTE Monroe, MIlch. WEBC Duluth. Minn. KWTO Springfield, Mo. KMON Great Falls, Mont. WGAI Elizaboth City N.C. WFIL Philadelohia. Pa. WIS Columbla. S.C. WHBQ Momphis, Tonn KLVI Beaumont, Tex.
KPQ Wenatehes, Wash. KPQ Wenatehes. Wash.
W JLS Beckley. W.Va.

570-526.0

WAAX Gadsden, Ala. KLAC Los Angeles. Callf. WFSO PInellas Pi D.C. FAO phellas Park. WKCL Waycross, Ga. WKYX Paducah, Ky KGRT Las Cruces, N.Mex. WMCA New York. N.Y. WMCA New York. N.Y. W WNC Ashevilie. N.t. WLLE Raleigh, N.C. WKBN Youngstown. Ohio WNAX Yankton, S. Dak. WFAA Dallas, Tex.

> Every effort has been made to insure accuracy of the information listed in this publication, but absolute accuracy is not guaranteed and, of cqurse, only in formation available up to press-time could be included. Copyright 1967 by Science \& Mechanics Publishing Co., a subsidiary of Davis Publications, Inc.,
> 505 Park Avenue, New York, New York 10022.
N.C. 250 d
$250 d$
1000 d
1000 d
$250 d$

5000
5000
1000
1000
$1000 d$
5000
5000
s000d
1000
5000
1000
5000
500 d
5000
5000
5000
5000
5000
5000
1000
1000
5000
5000
1000
1000
5000
5000
5000
5000
5000
5000 d

5000 d
1000
1000
5000
5000
5000
500 d
5000
1000 1000 5000
$500 d$ 5000 5000
500 1000 5000
5000
5000
5000

5000
5000

5000
5000
5000
5000
5000
500 d
5000
1000
1000 d 5000 d
5000
5000
5000
500
$500 d$
5000
5000
5000
5000 KUBC Montrose, Colo. WGAC Aupusta. Ga KFXD Nampa, Idaho WILL Upbina, III. Kans. KABW Topeka, Kans. WTA@ Worcester. Mass WELO Tupelo. MIss. WAGR Lumberton, N.C. KWIN Ashland, Oreg. WHP Harrisburg. Pa. WRBIKH Rockwood. S.Da KDAV Lubbock. Ten. WCHS Charleston, W,V

590-508.2

 WHAR Anchorage, Alaska KBHS Hot Springs, Ark.KFXM San Bernardino, Cal. KTHO So. Lake Tahoe, Cal. WDLP Panama CIt WPLO Atlanta Ga

$$
\begin{aligned}
& \text { KAMB Honolull. Hawall } \\
& \text { KID Idaho Falls. Idaho }
\end{aligned}
$$ WRTH Wood RIver, III

5000
1000 WVLK Lexington, Ky. WKZO K alamazoo. MIsh. WGLE Giendive, mont WROw Albany, N, Y. WGTM WIlson. N.C. KUGN Eugene, Oree. WMBS Uniontown, P KSUB Cedar City, Utah KHO Spokane, Wash.

- 499.7

WIRB Enterprise, Ala. KCLS Flagstaff. Arlz, KOGO San. Dlego, Callf. wICC Bridoeport, Conn WPDQ Jacksonvillo, Fla. WWOM New Orleans. owa WFST Caribou, Maine WLST Eseanaha Mich. WTAC Flint, Mieh. KGEZ Kallspell, Mont.
WCVP Murphy wSIS winston. Salem KSJB Jamestown. N.D. N.C. 5000 WSOM Salem, Ohlo WAEL Mayaguez. P. Ra. WREC Memphis. TEnn. KERB Kermit. Tex. KTBB Tyler. Tex. $610-491.5$ -

ve Length	W.P.	ave Length	Hz Wave Length	P.
WBAP Ft. Worth. Tex.	5000	KAVL Lancaster. Callf. 1000		
LUB Salt Lake City. Utah	5000	KFRC San Franelsco. Calif. 5000	680-440.9	
VI Seattle, Wash.	5000 $250 d$	W TOR Torrington, Conn. 1000 WIOD Mlaml, Fia.	KNBR San Franelsco, Cal. WPIN St. Petersburs, Fla.	50000 10000
MAM Marinette,		WIOD Mram, Fia. WMEL Pensacola, Fla, 5000 W00d	WPIN St. Petersburg, Fla. WRN N. Atlanta, Ga.	10000 5000
		WCEH Hawkinsville, Ga. 500 d	WCTT Corbin. Ky.	1000
WABT Tuskegee, Ala,	500d	KUAM Agana, Guam 10000	WCBM Baltimors, Mo	10000
X Tueson, Arlz.	5000	WRUS Russellville, Ky. 500 d	WRICO Boston, Mass.	50000
M1) Fresno. Callf.	5000	KOAL Duluth, MInne 5000	WDBC Escanaba. Mich	10000
KUBC Montrose, Colo.	5000	WDAF Kansas City. Mo. 5000	KFEQ St. Joseph, Mo.	5000
WDBO Orlando, Fla.	5000	KOJM Havre, Mont. 1000	WINR BInghamton.	1000
WGAC Aupusta, Ga.	5000	KCSR Chadron. Nebr. l000d	WNYR Roches	250
KFXD Nampa, Idaho	5000	WGIR Manchester. N.H. 5000	WPTF Raleioh, N.C.	50000
WILL Upbana, III.	5000d	KGGM Albuquerque, N. Alex 5000	WISR Butler, Pa.	250 d
KSAC Manhattan, Kans.	5000	WAYS Charlotto, N.C. 5000	WAPA San Juan, P. Rico.	10000
WIBW Topeka, Kans.	5000	WTVN Columbus. Ohis 5000	WMPS Memph	10000
KALB Aloxandpla, La.	5000	WIP Philadelphla. Pa, 5000	KBAT San Antonio, Tox.	50000
TAG Worcester, Mas	5000	KILT Houston. Tex. 5000	Komw Omak, WCAW Charles	1000d
WELO Tupelo. Mlss. KANA Anaconda. Mont	1000 1000	WSLS Roanoke, Va.	WCAW Charleston,	10000d
WAGR Lumberton, N.C.	500	WHPL Winchester, Va. 500	90-434.5	
KWIN Ashland, O	1000	KEPR Kennewick-Richmond.	WVOK Birmin	000d
HP Harrisburg.	5000	Pasco, Wash. 5000	K EOS Flagstaff,	1000
a San Juan.	5000	620-483.6	KEVT Tueson, Ariz,	250 d
BH Hot Springs, S. Dak.	500 d		KBBA Benton, Ark.	$250 d$
RKH Rockwood, Tenn. J	1000d	KTAR Phoenix, Ariz, 5000	KAPI Pueblo, Co	$250 d$
KDAV Lubbock. Tex.	$500 d$	KNGS Hanford, Callif. 1000	WADS Ansonla, Conn.	500 d
WLES Lawrencevilile,	500 d	KWSO Mt: 8hasta. Callf. 10000	WAPE Jacksonville, FI	000
CHS Charleston. W,	5000	KSTR Grand Junction, Colo, 5000d	KKUA Honelulu, Hawai	10000
<ty LaCrosso.	5000	WSUN St. Petersburg, Fla. 5000	KBLI Blackfoot. Idaho	1000d
-508.2		WTRP Lagrange, Ga. t000d	KGGF Coffeyvilie.	10000
KHAR Anchorage.		KMNS Sloux City, lowa 1000	R Minneapol	5000
WRAG Carpollton,	1000d	WTMT Loulsville, Ky. 500d	KSTL St. Louls.	$1000 d$
KBHS Hot Springs, Ark. 5	5000 d	WLB2 Bangor, Malno 5000	KEYR Terrytow	1000 d
KFXM San Bernardlno, Cal.	1000	WJDX Jackson. Alss. 5000	KRCO Prinevilit.	1000 d
KTHO So. Lake Taho	1000	WVNJ Nowark, N.J. 5000	WXUR Media,	500 d
SJ Pueblo, Colo.	1000	WHEN Syracuse. N.Y. 5000	KUSD Vermiliton, S.D	1000 d
DLP Panama City, Fla.	1000	WDNC Durham. N.C. 5000	KHEY EI Paso.	10000
PLO Atlanta. Ga.	5000	Prtiand, Oreo. 5000	KPET Lames	250
KGMB Honolulu. Hawall	5000	WHIB Groensburg. Pa. 1000	KZEY Tyler, Tex.	5000
KID Idaho Falls. Idaho	5000	WCAY Cayce, S.C. 500 d	WCYE Bristol, V	10000d
WRTH Wood River, III.	1000	WATE Knoxville, Tenn. 5000	WNNT Warsam	250d
WVLK Lexington, Ky.	5000	W Wehita Falls, Tox. 50	WELD Fisher, W. Va.	00d
WEEI Boston, Mass.	5000	WVMT Burlington. Vt $\quad 5000$	WAGO Oshkosh, Wls.	
Kzo kalamazoo. Mis	5000	WTMS Milwauke Wh. 1000	700-428.3	
E Giendive,				
Omaha,	5000	630-475.9	CIncinna	50000
GTM WIlson, N	5000	WAVU Albertville, Ala. 1000 d	710-422.3	
KUGN Eugene, Oreg.	5000	W 108 Thomasville. Ala, l000d	WKRG Moblle. Ala. KMPC Los Angoles. Callt.	1000
WARM Scranton, P	5000	KYAK Anehorage, Alas		50000
WMBS Uniontown, Pa	1000	KJNO Juneau, Alaska 1000	KBTR Denver, Colo.	5000
TBC Austin. Tex.	5000	KVMA Magnolla, Ark. 1000 d	WGBS Mlami, FI	50000
SUB Codar City, Utah	1000	KIDD Monterey. Callf. 1000	W UFF Eastman, Ga,	1000d
WLVA Lynchburg, Va.	1000	KHOW Denver, Colo. 5000	WROM Rome, Ga.	1000 d
Q Spokane, Wash.	5000	WMAL Washlngton, D.C. 5000	KEEL Shreveport, L	50000
		WSAV Savannah. Ga. 5000	WHB Kansas City,	10000
600-499.7		WNEG Toccoa, Ga. 500 d	New	50000
IRB Enterprise. Ala.	1000	KIDO Bolse, Idaho 5000	DZRH Man	10000
KCLS Flagstaff. Arlz.	5000	WLAP Lexinaton, Ky. 5000	WKJB Mavaguez, P.Rlco	1000
KVCV Redding, Callf	1000	KTIB Thibodaux, La. 500d	WTPR Paris. Tenn.	250d
KOGO San Dlego, Calif.	5000	WJMS Ironwood, Mlich. 1000	KGNC Amarillo, Tex	10000
KZIX Ft Collins, Colo. 1	10000	KDWB So. St. Paul. Minn. 5000	KURV Edinburg. Tex	250
WICC Bridgeport, Conn,	5000	KXOK St. Louls, Mo. 5000	K1RO Seattlo, W	50000
WPDQ Jacksonvillo, Fla.	5000	KGVW Belprade, Mont. 1000 d	WDSm Superior, Wi	5000
WMT Cedar Rapids. Lowa	5000	KOH Rono Nev. n 5000		
W0m New Orleans, La, I	1000 d	KLEA Lovington, N, Mox. 500d		
WFST Carlbou, Maine 50	5000 d	WIRC Hlekory, N.C. 1000 d	KUAI Eleele. Hawall	5000
WCAO Baltimore. Md.	5000	WMFD WIIminoton, N.C. 1000	WGN Chicago. III.	0000
LST Eseanaba, Mich. 100	1000 d	Cogulice OPag. 5000 d	730-410.7	
A ${ }^{\text {a }}$,	000	WKYN San Juan, P, R, 5000		
KGEZ Kallspell, Mon	1000	WMYN San Juan, P.R. 5000	WIMW Athens, Ala.	000
WCVP Murphy. N.C. 10	1000 d	WPRO Providence, R.I. 5000	KSUD W. Memphis, Ark.	250d
WSIS Winston-Salom. N.C.	5000	KMAC San Antonio. Tox, 500	WLOR Thomasville. Ga.	s000d
SJB Jamestown, N.D.	5000	KSXX Salt Lak Cly,	KLOE Goodland, Kans.	1000 d
WSOM Salem, Ohlo	500d	KGDN Edmonds. Wash. 5000	WFAW Madisonville, Ky	500
RM Coudersuort. Pa. 10	1000 d	portunlty, Wash. 50	WMTC Van Cleve, KY.	1000 d
AEL Mayaguez. P, R.	1000	640-468.5	KTRY Bastrop.	250 d
WREC Memphis. Tenn.	5000		WARB Covington, La.	250d
KROD EI Paso. Tex.	5000		WJTO Bath. Maine	1000d
ERB Kermit. Tex	1000 d	$\begin{array}{ll}\text { KFI Los Angeles, Calif. } & 50000 \\ \text { WOI Ames, lowa } & 5000 \mathrm{~d}\end{array}$	WACE Chicopeo, Mass.	5000 d
TBB Tyler. Tex.	1000	WHLO Akron, O. WNAD Norman, Okla. $\quad 1000 \mathrm{~d}$	WVIC E. Lansing, Mich	500
VAR Richwood, W.V.	000d		KWRE Warrenton,	1000 d
$610-491.5$		$650-461.3$	KWOA Worthington. Al	000d
			KURL Blllings, mont.	500d
SGN BIrmingham. Ala.	5000	KORL Honalulu. Hawall 10000 WSM Nashville, Tenn. 50000	KVOD Albuquerque, N.	1000d
			WDOS Oneonta. N.Y	1000 d
		KIKK Pasadens, Toxas	WFMC Goldsboro.	1000 d
inction			WOHS Shelby, N.C.	1000 d
blication, but absolu		660-454.3 And	KBOY Medford. O	1000 d
ond, of cqurse, only in		KFAR Faitbanks, Alaska 10000	W NAK Nantlcoke	$1000 d$
		KOWH Omaha, Neb. $\quad 1000 d$	WPIT Plitsburgh,	5000d
ss-time could be		WNBC Now York. N.Y. 50000	WPAL Charleston, S.C	1000 d
\& Mechanics Pu		Y Greenvillo, S.C. 10000 d	-	000d
		s, Tox 10000d	KPCN Grand Pralrie. Tex.	500 d
s Publications, Inc.		670-447.5	KSVN Ogden. Utah	1000 d
York, New York 10022		WMA@ Chlcago. Ill. 50000	NA Gretna, Va.	1000d

kHz Wave Length	W	kHx Wave Length W.P	ve Length	ave Lengt
KULE	,	K	K	WPFB Middletown, Ohio 1000
WXGT Marrili, Wis.	10000	KAGH Crossett. Ark, 230	WAMO Pittsurgh. Pa. 1000 d	KQLC Mlaml, Okla. $\quad 1000$ KURY Brookings, Oreg. $1000 d^{2}$
740-405.2		$\begin{array}{lll}\text { KVOM Morrilton, Ark. } \\ \text { KUZZ Bakersfild, Calit. } & \\ \text { Kind }\end{array}$	WL8G Laurens, S.C.	WAVL Apollo, Pa.
W	000d	KOAD Weed, Calir. 1000 d	KFST Ft. Stockton, Tex. 250 d	WGBI Scranton, Pa. 1000
1 EO Phoe	1000d	KBRN Brighton, Colo. 500 d	KPAN Hereford. Tex. 250 d	wSBA
KBIG Avalon, Cal. 10	0000d	WLAD Danhury, Conn. 1000d	KSFA Nacogdoches. Tex. $\quad 1000 \mathrm{~d}$	WPRP Ponce, P.R. ${ }^{\text {W }}$ NorthCharleston, S.C. ${ }^{5000}$
KCBS San Franclisco	50000	WRKV Rockrille		WNCG North Charleston. S.C. 5000 d
		WJAT Swainsboro, Ga. 1000d	Utah 1000d	WJCW Johnson City. Tenn. 5000
KYFC Cortez, Colo.	$1000 d$	WKZI Casey, 111.250 d	WEVA Emporia, Va. I000d	WEPG S. Pittsburgh. Tenn. 500 d
WSBR Boea Raton. F	1000	KXIC lowa City, lowa 1000 d	WOAY Oak Hill, W. Va. lo000d	
WKMK Blountston,	1000d	WCCM Lawrenee. Mass. 1000 d	WFOX Mllwaukeo, Wis. 250d	KRIO MeAllen, Tex.
WKis Orlando. Fia.	5000	WVAL Sauk Rapids. Minn. 250 d	870-344.6	KALL sait Lake City, Ulan 50
KYME Boise, Idaho WVLN OIney, If,	500d	WKON Camden. N. J. 5000d	KIEV Glendalo,	
BOE O	$250 d$	KJEM Okla, City, Okla. 250d	KAIM Honolulu, Hawaii 5000	1000d
AS Cambrid	$250 d$	KPOQ Portland, Orer 5000d	WWL New Orieans, La. 50000	0
PBM Carlsbad. N. Mex	1000d	WCHA Chambersburg, Pa. 1000d	WKAR E. Lansing, Mleh. 10000d	WPXI Roanoke, Va. 1000 d
WGSm Hunt	5000 d	WOSC Dillon, S.C. loood	WHCU Ithata, N.Y. 5000	KORO Pasco, Wash. 1000 d
WMBL Morehead	1000 d	WEAB Greer, S.C. 250d	WGTL Kannapolls, N.C. 1000 d	KIXI Seatile, Wash. $\quad 1000$
WPAQ Mount Alry.	000	WOEH Sweetwater, Tenn. 1000 d	WHOA San Juan, P.R. 5000	KISN Vaneouver. Wash. 5000
KRMGG Tulsa, Okla.	50000	KDOO Oumas, Tex. Utah 250 d	KJiM Ft. Worth, Tex. 250	WDOR Sturgeon Bay, Wis. 1000d
VCH Chester, Pa. IAC San Juan, P.R	$\begin{aligned} & 1000 \mathrm{~d} \\ & 10000 \end{aligned}$	WBUH Brigham City, Utah 5000 d		
BAW Barnwell, S.C	1000 d	WKEE Huntlngton		
1RJ Humbolt. Ten	250	upaca.	WCBS New York, N.Y. 50000	WCTA Ada
IG Tullahom			WRR2 ClInton, N.C. 1000 d	WWWR Russel
TRH Houston, ${ }^{\text {CM}}$	50000		WRFD Worthington, Dhio 5000d	KSRM Soldatna.
MC Toxarkana. Tox. BCI Williamsburg. V	$\begin{aligned} & 1000 \\ & 500 \mathrm{~d} \end{aligned}$	K GO San Franelseo. KWSR Rifle, Colo.	890-336.9	KARK Little Rock, Ark. ${ }^{5000}$ KLDC Ceres, Calif.
WBOD Baraboo, Wist		WATI Indianapolis. Ind. 25	WLS Chleago, III. 50000	KDES Palm Sprinos. Cal. 5000
		WYRE Ann	WHNC Henderson, N.C. 1000d	KVEC San Luis Dbispo, Cai. 1000
		WJPW Rockford. Mleh. 500 d	1000d	KREX Grd, Junetion. Colo. 5000
Achorago,	10000			KLMR Lamar, Colo. $\quad 5000$
8MD Baltimore, Md.	10000 d	WGYE Sthenectady, N.Y. 50000	81 r	WGST Atlanta, Ga. $\quad 5000$
MMJ Grand island, Neb.	10000 d	WKBC N.Wlikesboro, N.C. 1000d	WGDK mobll	WVOH Hazelhur
HEB Portsm	1000d	WCEC Rocky Mount, N.C. 1000d	WOZK 0zark, Ala. 1000 d	WGNOK Metronolis. llI . 1000 d
	000	WEDO MeKeesport. Pa. lo00d	KPRE Fairba	WBAA W. Lafayette, ind, 5000
DX Clarks	1000r	WKVM San Juan		W.uncll Blufts, la. 5000
WHA Madlson, Wis.	5000 d	Walz St. George. S.C. 5000d		KFNF Shenandoah. la. 1000 d
			WL Georg	
760-394.5		d	WSWN Belle Glade, Fla. 100	w Box Bogalu
M			WMOP Ocala, Fla. 100	KTOC Jonesboro, La, 1000 d
GU Hon	10	820-365.6	WCGA Calhoun, Ga. 1000 d	WPTX Lexington Pk., Md. 500d
WJR Detroit.	50000	Walt Chic	WCRY Maton, Ga. 250 d	WMPL Hancock. Mich. 1000 d
S Tarboro.	1000 d	WIKY Evansville, Ind. 250	WEAS Savannahp Ga. 5000 d	KDHL Fairbault. Minn. 5000
WORA Mayaguez, P.R.	5000	WOSU Columbus, Ohio 5000d	KTEE Idaho Falls, Ida. I000d	KWAD Wadena. M1
		WFAA Dallas. Tex. 50000	KEYN Wichita. Kan. 250d	KWYS
770-389.4		WBAP Fi. Worth. Tex. 50000	WFIA Loui	KRAM Las Vegas. Nev. 1000
Jom M	500		Sl Pikeville, Ky. 5000d	KOLO Reno, Nev. 1000
WCAL Northfield, MIn	500	830-361.2	KREH Oakdale, La. 250d	KQEO Albuquerque, N. Mex. 1000
WEW St. Louls.	10	KIkI Honolulu, Hawali 10000	WCME Brunswick, Maine 1000d	WTTM Trenton, N.J. 1000
OB Albuquerquo. N.M	50	KRK Honoluiu, Hawal Pal	WLMD Laurel, Md. 1000 d	WKRT Cortland, N.Y. $\quad 1000$ WGHQ Kingston. N.Y. 5000 d
BC New	50000		WATC Gaylord. Mleh. 1000 d	WGHD Kingston. N.Y. $\quad 5000 \mathrm{~d}$
KXA Seattle.	00		KTIS Minneapolls. Minn. lo00d	
780-384.4		KBOA Kennett. Mo. $\quad 1000 \mathrm{~d}$	WDOT Greenville, Miss. loond KFAL Fulton. Mo.	VI Columbus.0 Onio. $\quad 1000$
8 m Chica			KJSk Columbus, Nebr. lo00d	KGAL Lebanon. Oreg. 1000
	1000 d	840-356.9	WOTW Nashua, N.H. 1000 d	WKVA Lewistown, Pa. 1000
wCKB Dunn.	1000d	Mobile Ala. l000d	WBRV Boonville, N.Y. 1000 d	W JAR Providenee. R.I. 5000
W BBO Forest City, N	1000d	WRYM New Brltaín. Conn. 1000d		WTND Oranpeburo. S.C. 1000 d
KSPI Stlliwater, Okla	250d	WHAS Loulsville. Ky. 50000		KEZU Rapid City. S.Dak. 1000 d
A Arlingt	1000 d	WVPO Stroudsburg, Pa. 250 d	500 d	WLIV Livingston. Tenn. 10000
790-379.5			WIAM WIlliamston. N.C. 1000 d	WBZB Odessa, Tex. 1000
		850-352.7	KFNW Fargo, N.Dak. 1000 d	KTLW Texas Clity. Tex. 1000 d
A		WYDE Blrmingham, Ala. 10000	WNYN Canton, O. 5000d	KITN Olympla, Wash. 1000 d
KCAM Glennallen. A	5000	KICY Nome, Alaska 5000	WFRO Fremont. Onle 500 d	Spo
KCEE Tucson, Arix.	5000	0 $1000 \mathrm{~d}$	WCPA Clearnield. Pa. 1000d	WMMN Fairmont. W, Va. 5000
KOSY Texarkana. Arl	1000	KGKO Benton, Ark. 50000	WFLN Philadelphla, Pa. 1000d	WOKY milwaukee. Wls. 5000
DAN Eureka. Calli.	5000 d	WRUF Galnesville. Fis. 5000	WKXV Knoxville. Tenn. loood	
ABC Los Angeles, Calif.	5000	WEAT W. Palm Beath, Fla. 1000	WCOR Lebanon, Tenn. 500d	930-322.4
WFUN S. Mlami, Fla.	5000 5000	KIMO Hilo. Hawall 1000	KALT Atlanta, Tex. lo00d	WETO Gadsden. Ala. 1000 d
WYNR Brunswlck. Ga.		WCLR Crystal Lake. III. 500d	KMCO Conroe. Tex. 500d	KTKN Ketchikan, Alaska 5000
WGRA Calro.	1000 d	WHDH Boston, Mass. 50000	KFLD Floydada. Tex. 250d	KAPR Douglas. Arlz. 1000d
KONA Kealakekua, Hawall	1000	WKBZ Muskegon, Mich. 1000	KCLW Mamiton. Tex. 2500	KAFF Flagstaff, Ariz. 5000 d
KEST Boise, Idaho	1000 d	WKKIX Raloloh, N.C. 10000	W00Y Bassett, ${ }^{\text {WAFC Staunton, Va. }} 1000 \mathrm{~d}$	KHJ Los Angeles, Calif. 5000
RV Soda Springs	5000 d	WJW Cleveland, ohlo 10000	KUEN Wenatehee, Wash. 1000d	KEWP Durango Colo.
MS Beardstown. II.	50	W JAC Johnstown, Pa. 10000	WATK Antigo, Wls. 250	
Y Loulsyllle.	5000	WEEU Reading. Pa. $\quad 1000$		HAN Hal
WRU M Rumford.	1000 d	WABA Aquadilia. P.R. 500	910-329.5	lacksonvilie. Fla. 5000
WSGW Saplnaw, Mie	5000	WIVK Knoxville, Tenn. 500000	WDVC Oadevilie, Ala. 500d	WKXY Sarasota, Fla. 1000
GHL Billin	5000	0000	KPHO Phoenix. Arlz. 5000	WMGR Baintridoe, Ga. 5000
WNY Watertown	1000	1000	KLCN Blythoville, Ark. 5000 d	KSEI Pocatello. Idaho
LSV Wellsv	10000 d	34	$\begin{array}{ll}\text { KAMO Camden, Ark. } & 5000 \\ \text { KDEO EI Calon, Cailf. } & 1000\end{array}$	WTAD Quincy,
TNC Thomasvilie,	$1000 d$ 5000	Hartselle, Alas 250d	KDEO EI Calon. Callf. $\quad 1000$ KNEW Oakland, Calf.	WKCT Bowling Green, Ky. 100
$\begin{aligned} & 30 \text { Farg } \\ & \text { IL Albat } \end{aligned}$	1000	WAMI OpM, Ala. 1000 d	KOXR Oxnard. Cal. 5000	WFMD Frederick, Md. 5000
WAEB Allentown. P	1000	KIFN Phoenlx. Ariz. 1000d	KPOF Denver, Colo, 5000d	WREB Holyoke, Mass. 500 d
IC Sharon,	1000 d	KOSE Osceola. Ark. 1000 d	WRCH New Britain, Conn. 5000	WBCK Battle Creek, Mieh. 5000
AN Providenec. R	5000	KWRF Warren. Ark. - 250 d	WPLA Plant city. Fla, 1000 d	KKIN Altkin, Minn. 1000 d
Bamberg. Denma		KTRB Modesto, Calif. 10000	WGAF Valdosta. Ga. 5000	WSLI Jackson, Miss. 5000
	1000d	WAZE Clearwater, Fla. 500d	KBGN Caldwell. Ida. I000d	KWOC Poplar Bluft. Mo. 5000
WETB Johnson Clity. Tenn.	1000d	WKKO Coena. Fla. 1000	WAKO Lawrenceville, III. 500d	KOFI Kallspell. Mont.
WMC Memphls, Tenn.	5000	WERD Atlanta, Ga. 1000	WSUI lowa Clty, Iowa 5000	KOGA Ogallala, Nebr.
KTHT Houston. Tar		WOMG Douglas, Ga. 5000d	KISI Salina. Kan. 500 d	kCCC Garl
YO Lubboek.	5000	WMRI Marion, Ind, 250 d	WLCS Baton Rouge, La, 1000	N Washington. N.C. $\quad 5000$
UTA Blanding, Utah	10000 $1000 d$	KWPC Muscatine, lowa 250d	Fl Banpor, Maine 5000	WW NH Rochester, N.H. $\quad 5000$
SIG mount lackson.		KOAM Plitsburg, Kan. 10000d WSON Henderson. Ky,	WCOC Merldian. Miss. $\quad 5000$	WPAT Paterson, $\mathrm{N} . \mathrm{J}$, 500
KGMI Bollingham. W	5000	WAYE Baltimore. Md. $\quad 1000 \mathrm{~d}$	KOYN Bllings. Mont. 1000 d	WBEN Buffalo, N, Y. 5000
KJRB Spokane, Wash	5000	WSBS Gt. Barrinoton, Mass. 250 d	KYSS MIssoula. Mont. 1000 d	WIZR Johnstown. N.Y. 1000 d
WEAQ Eau Clalre, Wism	5000	KNUJ New Ulm. Minn. 1000 d	KB1M Roswell. N. M. 5000	EOL Elyria, Ohio 1000
		WMAG Forest. Mlss. 500d	WRKL New City. N.Y. 1000 d	KY Oklahoma
800-374.8		Bolen, N. Mex. 250d	WLAS Jacksonvilie, N.C. 5000d	KAGI Grants Pas5, Oreg. 5000
whoS Decatur, Ala,	$1000 \mathrm{~d}$	WFMO Fairmont. N.C. $\quad 1000 \mathrm{~d}$ WSTH Tayorsvilie, N, C. 250 d	KCJB Minot. N.Dak. 5000 WBRI Marietta, 0.	WCNR Bloomsburg, P

WMGY Montgomery, Ala.

WHITE'S

kHz Wave Length
KSON Aberdeen, S.D. WSEV Sevlervilic, Tenn. KDET Center. Tex. KITE San Antonio, Tex KENY Belingham. Ferndale, KQOT Yakima, Wash. Wash. ${ }^{1000 d} 1$ WSAZ Huntlngton. W.Va. 5000 KROE Sheridan, wy WLBL Auburndale, wi

940-319.0

KHOS Tueson, Arlz.
WINE Brookfield. Conn WINZ Mlami, Fia.
MAZ Macon, Ga
KAHZ Macon, Ga, WMIX Mt Vernon, III. KIOA Des Miolnes, Jowa WCND Shelbyville, Ky. wIDG St Ionee Aren vjor South Haven, Mil WCPC Houston Milis. Mich, 10000 d KSMW Aurora, Mo. KVSH Valentine. Nebr. WFNC Fayettevifle. N.C WCIT Lima, Ohlo
KGRL Bend, Oreg.
KWRC Woodburn. Ore. WGRP Greonvilio, Pa WIPR San Juan, P.R KIXZ Amarillo. Tex KATa Texarkana. Tex. WNRG Grundy, Va.
WFAW Ft. Atkinson, WIs.
950-315.6
WRMA Montgomary, Ala. KIBH Seward. Alaska KFSA Ft. Smlth. Ark. KAHI Auburn, Calif. KIMN Denver, Colo. WGTA Summervilise Gs. WGOV Valdosta, Ga, KATN Bolse, Ida. KGRT Chicaio dil WXLW Indianapoilis, Ind. KOEL Oolweín, la. KJRG Newton, Kans. WAGM Presque Isle. Main WAGM Presque Isle. Maine 5000 WRYT Boston, Mass. 1000 d WWJ Detroit, Mieh. 5000 KRS He Helisbark, Miss. 5000 BKH Hatiersen City Miss. 5000d WHVW Hyde Park, N. Y. WBBF Rochester. $\mathrm{N} . \mathrm{Y}$. WIBX Utica. N.Y.
KYES Roseburg, Orea
WNCC Barnestooro Pa
WPEN Philadelphia. Pa.
WBER Moneks Corner, S. C. KWAT Watartown S.Dak OSX Denison. Sterm. 1000 SEl Lubock Tex.
WXGI Rilenmond. Va.
JR Seattle, Wash.
WKAZ Charleston, W.Va
WKTS Sheboygan, wis.
KMER Kemmerer, wyo.

960-312.3

WBRC Birmingham, Ala, WMOZ Moblle. Ala. KOOL Phoenig Ariz. 1000 KAVR Applo Valley. Callf. 5000 d KNEZ Lompoc, Calli, WELI New Haven, Conn. WGRO Lako Clty, Fla. WJCM Sebring. Fla. WJAZ Albany, Ga.
WRFC Athens, Ga,
KSRA Salmon, Idaho
1000
5000d
1000 d

5000

5000

5000 d

250
50000
1000 d
50000
50000
10000
5000d
10000
1000 d
5000 1000 d
50000 d 500 d
500 d 10000 10000
$250 d$
$250 d$
250d
100 d
250 d
2500
000d
10000
5000
1000 d
1000 d
5000 d
500d

1000 d
1000
5000 d
1000
$5000 d$
5000
5000
5000
$5000 d$
5000
5000
5000 d
1000 d
1000d
$5000 d$
5000 0

WWSW Portland, Oreg. WJMX Florence, S.C. KHFI Austin. Tez. KNOK Ft Worth WIVI Christiansted, V. WYPR Danvillo, Va. WANY Waynesboro, V_{a} WWYD Plnaville, W.Va.
WHA Aladisan, WAKX Superior Wis.

980-305.9

WKLF Clanton. Ala WXLL Bio Oolta. Alaska KCAB Dardanelle, Ark
KINS Eureka. Callf. KINS Eureka, Callf.
KEAP Fresne, Callf. KFWB Los. Angeles; Callf. KCTY Sallnas, Callf. KGLN Glennwood Springs,

WSUB Groton. Conn.

WRC Washington, D.C. WDVH Gainesville, F
WTOT Marlanna, Fla. WTOT Marlanna, Fla,
WBOP Pensacola, Fla, WLoD Pompano Beach, Fla. WKLY Hartwell, Ga,
WPGA Perry, Ga, WPGA Perry, Ga.
WRIP Rossvlile, Ga. KUPI Idaho Falls, Idaho WITY Danvilie. III.
KREB Shreveport, La KREB Shreveport, La,
WCAP Lowelf, Mass, WAOP Otsego, Mlch. WPBC Richfield, Minn. WAPF McComb, Mlss. KMBZ Kansas Clity, Mo.
kHz Wave Length
WOLM E. Moline, lil. WSBT South Bend, Ind. KMA Shenandoah. Iowa
WPRT Prestonsburg, Ky KROF Abbeville, La. WBOC Salisbury, Md. WFGL Fitchburg, Mass. WHAK Ragers Clty, Mich. W AB Creenwood Miss. KFVS Cape GIrardeau, Mo. KFLN Baker, Mont. KNEB Scottsbluff. Nebr. KRIK Rosweli, N. Mex. WEAV Plattsburg, N.Y. WAAK Dallas, N.C. WFTC KInston, N.C.
WWST Wooster, Ohio KGWA Enid, OkJa. KLAD Klamath Falls. Ore, WHYL Carlisid, Pa. WATS Sayre, Pa. WBEU Beaufor, s.c. WBMC Meminnvilie. Tenn. KGKL Mr. Pleasant, Tex. KOVO Provo, Utah WDB Roanoke, V a WTCH Shawano, Wls.
970-309.1
WERH Hamiston, Ala.
WTBF Troy, Ala.
KNE Show Low, Ariz.
KNEA Jonesboro, Ark.
KCHV Coachella, Calif
KBEE Modesto, Callf.
WBOM Jacksonville. Fla.
WFLA Tampa, Fla.
WVOP Atjanta, Ga.
KPUA HIlo, Hawail
KAYT Rupert. Idaho
WMAY Springield. Ill
WAVE Loulsville, KY.
WCSH Portland, Maline
WAMD Aberdeen, Md
WESO Southbridge, Miass,
WCKD Ishpeming. Mích
WKHM Jakison, Mleh.
WRKN Austin, Minn.
KOOK Bllilings, Miont.
KJLT No. Platte, Nebr.
KVEG Las Vogas. Nev.
KDCE Espanola, N.
WEBR Buffalo. N.Y
WCHN Norwieh, N.Y.
W RCS Ahoskio, N.C.
WDAY Fargo, N.C.
WDAY Argo, N.Dak,
WAEO Ashatula, Onio
WATH Athens, Ohio
WAKH Athens, Ohi
KOIN Portland, Oreg.
WWSW Plttsburgh, Pa
KHFI Austin. Tex.
KNOIK Ft. Worth, Tex.
WYPR Danvilio, Va. Vash.

1000 d
5000
5000
5000 d
1000 d
5000
1000
5000 d
500 d
1000
5000
5000 d
1000
1000 d
1000 d
5000
1000 d
5000
1000 d
1000
5000
5000 d
1000 d
1000 d
1000 d
500 d
1000 d
5000
5000
5000
1000
1000

KLYQ Hamilton, Mont
Ra.
$1000 d$
$5000 d$
kHz Wave Length W.P

KRVN Lexington, Nabr,	25000 d
WCNL Nawport, N.H.	2500 d
WINS New York, N.Y.	50000
WAB2 Albermarle, N.C.	1000 d
WFGW Black Mountaln. N.C.	50000d
WELS Kinston. N.C.	1000d
WIOI New Baston, Ohio	1000d
K BEV Portland, Oreg.	1000d
WUNS Lewlsburg, Pa.	250d
WHIN Gallatin. Tenn.	1000d
WORM Savannah, Tenn.	2500
KVII Amarlilo, Tex.	5000
KOOA Houston. Tex.	$5000 d$
KAWA Waco-Marlin, Tex.	10000d
WELK Charlottesvilie, Va.	1000d
WMEV Marlon, Va.	1000d
WPMH Portsmouth, Va.	5000 d
WCST Berkeley Spras.,W.	a. 250 d
WSPT Stevens Pt. Wis.	1000 d
1020-293.9	
KGBS Los Angeles, Calif.	50000
WCLL Carhondale, Ill.	10000
WPEO Peoria, Ill.	10000 d
KSWS Roswell, N.M.	$50000 d$
KOKA Pittsburgh. Pa.	50000
1030-291.1	
WB2 Boston, Mass.	50000
KCTA Corpus Chrlsti, Tex.	$50000 d$
KTWO Casper, Wyo.	10000
1040-288.3	
KHVH Honoluiu, Havall	5000
WHO Des Moines, lawa	50000
KiXL Dallas, Tex.	$1000 d$
1050-285.5	

Colo. 1000 d 5000
1000 d 5000 d
5000
1000 d
500 d

1000d
100
1000 d
000 d
5000
5000
000d
000d
000 d
5000
5000 d
1000 d
$1000 d$

$1000 d$ $1000 d$

1000 d
500 d
1000 d
1000
5000 d
5000 d
1000 d
1000 d
5000
5000 d
5000
5000 d
5000
5000
50000
$5000 d$
1000 d
1000
1000
1000 d

5000
5000 d
5000 d
5000
500
1000 d
1000
1000
5000
1000
500
5000 d
1000
5000
5000
5000 d
$500 d$
5000
$1000 d$
5000
500d
1000 d
1000 d
5000
5000
5000
1000 d
1000
5000
5000
5000
5000
5000
$1000 d$
$1000 d$
00d
W 100 Carlisle, Pa.
WKYB Hemingway,
WGOG Wahalla, S, S.C KSTA Coieman, Te KGRI Hendersen. Tex WKDE Altavista, Va WHWB Rulland, V

Virgin Islands 1000

KOMD Seattie. Wash. 50000

$1010-296.9$

KCAC Phoenlx, Ariz.

K NC Winslow, Ariz. KLRA Little Rock. Ark. 10000 KCMJ Palane, Callf. 5000 KSAY San Spros. Cailf. 1000 WCNU Crestran. Calif. 10000 d WBIX Jacksonvilie Beath WINQ Tampa, Fla. \qquad WGUN Atlanta-Decatur.

KATN Bolse, Idaho

 WCSI Columbus. Ind. KIND Independence, Kans KDLA DeRIdder, La. WSID Baltimore, Mid WITL Lansing. Mich. WRCR Maplewood. MInn. WMOX Merldian, Milss. KCHI Chililicothe, Mo. KXEN Festus-St. LouisWRFS Aloxander CIty, Ala. 1000 WCRI Scottsboro. Ala. 250 d KVLC Litile Rock, Ark. 1000 d KTOT Big Bear Lake, Cal. 250d KOFY San Mateo, Calif. 1000 d $\begin{array}{ll}\text { KWSO Wasto, Calff. } \\ \text { WISB Crestview. Fla. } & 1000 \mathrm{~d}\end{array}$ WISB Crestview. Fla. \quad I000d
WIVy Jacksonville. Fla. I000d WIVY Jacksonvilis, Fla. $\quad 2000$
WHBD Tampa, Fla. $\begin{array}{ll}\text { WHBD Tampa, Fla, } & \text { 250d } \\ \text { WRMF Titusville, Fla. } & 500 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { WAUG Aususta, Ga. } & 5000 \mathrm{~d} \\ \text { WMNZ Monteruma, Ga. } & 250 d \\ \text { WOZ Decatur. III. } & 1000 \mathrm{~d}\end{array}$ WDZ Decatur. III. 1000 d
WTCA Plymouth. Ind. 250 d KUPK Garden City, Kan, 5000 d
WNES Central City, Ky.
KOOd KLPL Lake Providence. Ln. 250 d $\begin{array}{ll}\text { KCII Shreveport, La, } & 250 d \\ \text { KVPI Villa Platte, La. } & 250 d\end{array}$ WMSG Oakland. Md. $\quad 500 \mathrm{~d}$
WOMR Sllver Sprg., Md. $\quad 1000 \mathrm{~d}$ WPAG Ann Arbor, Mleh. 5000 d KLOH Plpestone. MInn. $\quad 1000 \mathrm{~d}$
WACR Columbus. Mlss. WACR Columbus, Mlss, $\quad 1000 \mathrm{~d}$
KMIS Portasevilie, Mo. $\begin{array}{ll}\text { KSIS Sodalla, Mo. Nov. } 1000 d \\ \text { KLVC Las Vegas. NoV. } & 500 \mathrm{~d}\end{array}$ WBNC Conway, N.H.
WSEN Baldwinsvilis. N,Y. $\quad 2500 \mathrm{~d}$ WYBG Massena, N.Y. 1000 d WFSC Frankiln, N.C. 1000 d $\begin{array}{ll}\text { WLON Lincointon. N.C. } \quad 1000 d \\ \text { WZIP Sanford. N.C. } \\ \text { KZInati, Onlo } & 1000 \mathrm{~d}\end{array}$ KCCO Lawton, OkIa. $\begin{array}{ll}\text { KFMd Tulsa. Okla, } & \text { I000d } \\ \text { KORE Eugene, Ore, } & 1000 d\end{array}$ $\begin{array}{lr}\text { WBUT Butler, Pa. } & 1000 \mathrm{~d} \\ \text { WWDS Everott, Pa. } & 250 \mathrm{~d}\end{array}$ WLYC Willlamsport, Pa, 1000 d WCG8 Pastilio, P.R. $1000 d$
WSMT Sparta, Tonn.
KIEN KIlleen, Tem. KPXE Liberty, Tox. KCAS Slaton, Tex. WGAA Charlottesville, Va. $\quad 5000$
WGAT Gate City, Va. $\quad 10000$ WBRG Lynchburg, Va. $1000 d$ KBLE Seattle, Wash WCEF Parkersburg, W. Va, 5000 d WECL Eau Clairs. Wis. Io00d WLIP Kenosha, Wis. 1000 KWIV Douglas, Wyo. 250 d
1060-282.8
$\begin{array}{lr}\text { KUPD Tempo. Arlz. } & 500 \\ \text { KPAY Chleo, Callf. } & 10000\end{array}$ KLAM Chleo, Calif. $\quad 10000$ WMCL MicLeansboro, III.
WJKY Jamestown, Ky.
W JKY Jamestown, Ky.
WNOE New Orleans, La. 50000
WHFB Ben. Joseph. Mich, 5000d KFIL Preston. MInn.
KNLV Ord, Neb.
WMAP Monroe. N.C.
WBYB St Pauls, N.C

wCOK Sparta, N.C
KYW Philadolphia, Pa WRJS San German, P. R. WALD Walterboro, S. C WCIA Beckley, W. Va KHRB Lockhart. Tex. KRSP Salt Lako City, Utal

1070-280.2

WAPI Birmingham, Ala. KNX Los Angeles. Calit 50000 wVGG Coral Gables. Fla. WIBC Indianapolis. Ind. KILR Esterville, la.
KFDI Wichita, Kan KFDI Wichita, Kans.
KHMO Hannibal, Mo. KHMO Hannibal, Mo. WKOK Sunbury. Penn. WMIA Arecibo, P. R. WHYZ Greenville, S.C.
WFLI Lookout Mtn., Tenn. WDIA Memphis, Temn. KOPY Allice. Tex.
KNNN Friona, Tox.
KENR Houston, Tex. WINA Charlottosville. Va. WKOW Madison. Wis
1080-277.6 WKAC Athens. Ala. WTIC Hartford, Conn. WVCG Coral Gables. Fla.
WFIV Kissimmee, Fla. WBIE Marietta, Ga. WPOK Pontlac, III. Ind. KOAK Red Oak. la. WKLO Loulsville, KY.
WOAP Owosso, Mileh. KGCL East Prairio, Mo
WUFO Amherst. N.Y. WUFO Amherst, N.Y. WWDR Murfreesboro, N.C. KNDK Langdon, N.D. KWJJ Portland, Oreo. WEEP Pltsburgh. Pa. W LEY Cayoy, P.R. KRLD Dallas. T, Tex.
KKBY Chatham, Va,
1090-275.1

KAAY Little Rock, Ark.	50000
WQIK Jacksonville. Fla.	50000 d
WWSD menticello. Fla.	1000d
WBAF Barnesville, Ga,	
WCRA Eftingham. III.	1000
WGLC Mondota, III.	250 d
KHAl Honolulu, Hawail	5000
WFWR Ft. Wayne, Ind.	
KNWS Waterloo, lowa	1000d
W DLV Donalsonville.	
WBAL Baltimore. Md	50000
WILD Boston, Mass.	1000d
WMUS Muskegon, Mleh.	1000 d
WTAK Garden City, milch	$250 d$
WKTE King, N.C.	d
KTGO Tioga, N.D.	
WM WM Wllmington.	1000d
WKSP KIngstree.	
WENR Englewood, Tonn.	1000d
WJKM Hartsville. Tenn.	250 d
W GOC K ingsport. Tenn.	
KANN Ogden, Utah	
KING Seatte.	50000

1100-272.6
KFAX San Franelseo, Callf. 50000 WLBB Carroliton. Ga. WKYC Cleveland. 0. WGPA Bethlehem. Pa,
1110-270.1
WBCA Bay MInetto. Ala, 10000 d WBIB Centreville, Ala.
KPOP Roseville Cal.
WALT Tampa, Fla.
WGKA Atlanta, Ga.
WEBS Calhoun, Ga.
KIPA HIlo. Hawal!
WKDZ Cadlz, Ky.
W FCC Franklinton, La.
W)ML Petoskey Mich

WKRA Holly Springs. Miss. 1000 d WBT Charlotte. N.C.
WELX Xenla, O.
KEOR Atoka, Okla.
KBND Bend, Orea.
WISM Martinsburg. Pa. WNAR Norrlstown. Penn. 50000,
0
d

d

d
000500od500001000 d1000 d
250 d500 d000d1000 d1000d500001000 d
10000 d10000 d
500002500

WPHC Waverly, Tenn. 1000d

 KDRY Alamo Helghts, Tex. 1000 d $1120-267.7$
wUST Bethesda. Md.

KMOX St. Louls. Mo. WWOL Buffalo. N.Y KPIR Eugene, Ore.

1130-265.3

KRDU DInuba, Calif. KSDO San Dieso, Cal. WLBA Gainsville, Ga. KLEY Wellington, Kan. KWKH Shreveport. La. WCAR Detront. Mith. Minn. KBLR Bolivar, Mo. WNEW New York, N.Y,
KBGH Memphis, Tenn. WDTM Solmer. Tenn. KBGH Memphis. T

$1140-263.0$

KRAK Sacramento, Callf. 50000 KNAB Burlington. Colo. WMIE Miami. Fia. KGEM Bolse, Idaho WSIV Pekin, WAW K Kendalfiltle, Ind. KNEI Waukon, la. KBIL Liberty, Mo KPWB Pledmont, Mo 500d KLPR Oklahoma City, okla. 1000 d WITA San Juan, P.R. 10000 KSOO Sioux Falls. S.Dak. 10000 KORC Mineral Wells, Tex. 250 d
WRVA Rlohmond, Va.
50000 $1150-260.7$
WBCA Bay MInette. Ala. WGEA Geneva, Ala. WJRD Tuscaloosa, Ala.
KCKY Coolidge. Ariz. KXLR No. Little Rock. Ark. K

kHz Wove Length	W.P.	Hz Wave Length	W.P. ${ }^{\text {H }}$: Wave Length	W.P. ${ }^{\text {KH }}$	ve Length	P
ONW Deflance, Ohlo	$1000 \mathrm{~W}$	WIBR Baton Rouge,	1000	LW Walnut		FA Spokane. ETZ New Marti	00d
LMJ Jackson. Ohlo	$1000 \mathrm{~d}$	WFBR Baltimore, Md.	5000 K	KHS ${ }^{\text {He }}$	$500 \mathrm{~d}$		
LCD Poteau, okla. 10	1000 d W	WIDA Quiney, Mass.	1000 d K	KLAN Lemoore, Califir.	$\begin{array}{r} 1000 \mathrm{~d} \\ 500 \end{array}$	L	000
KERG Eugene. Dres.	5000 W	W00D Grand Rapids, Mith,		KCRA Saeramento, Cal	5000	\%.	000
BRX Berwitk, P. 10	1000 d W	WKPM Pr	5000 K	KAVI Roeky Ford, Colo.	1000d		
HVR Hanover, Pa.	$15000{ }^{1}$	KMMC Marshal!,	1000 d W	Watr Waterbury, conn	5000	-22	
N Arectio	5000 K	KBRL McCook.	5000 d W	W GMA Hollywood, Fla.	5000	an, Ala.	0
WANS Anders	5000 K	KPTL Carson city,	5000	WZDK Jaeksonvi	$\begin{aligned} & 5000 \\ & 500 \mathrm{~d} \end{aligned}$	Ala	0
W JAY Mullins. S. C. 50	5000d W	WPNH Plymouth, N.H.	1000d	WHIE Grifin, Ga.	5000d	Sy	1250
WMCP Columbla. Tenn. 100	1000 d W	WAAT Trenton. N.J.	$\begin{aligned} & 5000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$	WKAN Kankakee, III.	1000	WIKO Miaml.	1000
WDNT Dayton, Tenn, 10	1000d W	WMM LICB.	1000 d	KNIA K noxvllie, Jowa	500d K	KFBR Nodales. Ariz.	250
NIT Abilene, Tex. WHI Brenham, Tex.	$\begin{array}{r} 500 \mathrm{~d} \\ 1000 \mathrm{~d} \end{array}$	WEEE Renssolaer, N.Y.	5000 d	KMAQ Maruoketa, Jow	500 d	KENT Prescoti, Ariz.	000
KLUE Lonoview. Tex. 10	1000 d W	WRRC Spring Valley, N, Y.	500 d	KLWN Lawrence, Kans,	1000 d	KBTA Bates	1000 250
KRAN Morton. Tex.	500 W	WGOL Goldsporo	1000 d	WCLU Covinoton. $k y$.	500 d .		1000
VWG Pear	5000	WSYD Mt.	5000	WNGD Mayfleld, KY.	1000 d	KATA Ar	1000
NAK Salt Lake City. Utan	1000 d W	WERE Cloveland, Ohio	5000	KHAL Homer.	1000 d	KWXY Cathedral C	250
MAS Shelton, Wash. 10	1000 d W	WM Y M Mt. Vernon, Ohlo	500	WICD Salisbury, Md.	1000 d	KMAK Fresno. Cal	1000
KUDY Spokane, Wash. 50	5000 d K	KOME Tulsa. Okla.	5000	WARA Attieboro.	$\begin{aligned} & 1000 \\ & 5000 \end{aligned}$	KDOL Mojave, Cal.	250
KIT Yaklma, Wash.	5000 K	K KaCl The Dalles. Or	$\begin{aligned} & 5000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$	WDM ${ }^{\text {W }}$ Marquet	1000	KSFE Needies.	1000
AR Richwood. W.Va.	1000 d 5000		500 d	WRJW Playune. Miss.	5000 d		
AM Neen			1000d	KXLW Clayto	1000d		0
1290-232.4		WTIL Ma	1000	KOLT Seo	5000	KIST Santa Barbara, Calif.	1000
WHOD Jackson. Ala. 10	W	WLOW Aike	d	WWH G Horn	5000 d	KOMY Watsonvil	00
SHF Sheffield, Ala.		WDOG All	10008	WAGY Forest city.	1000	KWSL Grand Ju	250
MLS Sylacaupa, Ala. 1	1000 d	WKSC Ker	500d	WCOG Greenstoro.	5000	KVRH Salida. C	000
KCUB Tuesan, Ariz.		KOLY Mobridge, S. Dak.	1000d	WKRK Murphy	5000 d	WNHC New Hav	0
KDMS El ${ }^{\text {K }}$	5000 d	WMTN Morristown.		WEEW Washington,	$500 \mathrm{~d}$	wook Washington. D. C.	1000
KHSL Chico. Callf.	00	WMAK Nashville, Tenn.	5000 5000	WHROK Lancaste	$1000 \mathrm{~d}$	wSLC Clerm	$\begin{aligned} & 250 \\ & 250 \end{aligned}$
ZA Gliroy Cal.		KVET Austin. Tex. KKUB Brownfield,	$\begin{array}{r} 5000 \\ 1000 \mathrm{~d} \end{array}$	KWOE Clinto	1000d	WROD Dayion	1000
N S		KGNS Laredo, Tex.	1000 d	KATR Eugene.	d	w DSA L	00
		KKAS SIIsbee. Tex.	500 d	WKAP Allentown,		WTYS Marian	00
		kSTU Logan, Utah	1000	WGET Gettysburg, Pa.	1000	WQXT Palm Be	500
	1000 d W	W KCY Harrisonburg. Va		WJAS PIt		WSEB Sobrín	
WTMC Oeala, Fla.	5000	KOL Seatt		w	5000	WFSH Valparaiso, F	000
		Morgantown.	1000 d	WUNO Rio		W100 Allanta, Ga.	000d
da	Od			WOIC Colum			1000
K		1310-228.9		WKIN Kingspor	5000 d		1000
C Amerleus.	00d			WMSR Manchester. Ton	500	W0KS Columbus.	10
WCHK Canton. Ga	1000d	WJAM Marion. Ala.	5000 d	KVMC Colo. City, Tex.	1000 d	WBBT tyons, Ga.	1000
TOC Savannah. G	5000	KBUZ Mesa, Ariz.	5000	KXYZ Houston, Tex.	5000	W-1F	000
SNN Pocatello,	10000	KBUz Alesa. Ariz.	1000d	KCPX Salt Lake City, Ulah		KAIN Nampa	1000
WIRL Peorla.		K10T	000d	WDMS Lynehburd, Va.	1000	KPST Preston, Ida	
REY New Albany,	50	KPOD Crescent city, Ca	1000d	WEET RIthmond, Va.	1000 d	KSKI Sun V	
Pratt.	5000 d	KDIA Dakland. Cal.	5000	KXRO Aberdean		W	1000
WEF Bento	1000d	KTKR Taft.	0d	KHI Walla waina.		WIPF Herrin	
WHGR Houghton Lake, Mith.	.	KFKA Grealey, Colo,	5000 d			W	
WNIL Niles, mich.	500 d	WICH Norwie	000			w	
woib Sallne, Mlch.	500 d	WDOO Doland	5000 d	1330-225.4		WTRC Mur	1000
KBM1O Benson. M1n	500 d	wauc	500 d	WROS Seottsboro. Ala.	10004	KROS clinton, lowa	100
WBLE Batesville. M	000d	WOMN		KMOP Tueson. Arlz.	500 d	KCKN Kansas City. Kan	000
KALMt Thayer, Mo.	10000	WOKA DOUR	1000d	KVEE Conway, Ark.	500d	KSEK Pittsburg. Kans.	1000
KGVO Missoula, M		WBRO Way	10000	KLOM Lompoc, Cal.	$1000 d$	WCMI Ashland.	1000
KOIL Omaha,	5	WBMK West Point. Ga.	1000 d	KFAC Los Angelos.	5000	KENT Prascott, Ariz	250
	1000 d	KNUI Makawao. Hawall	5000	KLBS Los Ba	500 d	5 Mu	0000
		KLIX Twin Falls, Idaho	5000	KAHR Reddino. Callf.	5000 d	WEKY RIchmond, Ky.	000
WNBF Bing		WIFE Indianapolis. Ind.	5000	WARN Ft.		KVOB	
WHKY	5000	KDLS Parry, lowa		WEBY Malt	5000 d	K	
S		KOKX Keokuk. lowa	1000 d	WMEN TA		WFAU Augu	
WOMP Bellalre. Ohio	1000d	K	5000	WMLT Dub	5000		000
HID Dayton. Ohio	5000	WTHL Madisonvte.		WEAW Evan	5000	WGAW Gar	
KUMA Pend	50	KIKS Sulo	500 d	WRAM Monmouth. III.	1000d	WNBH New Bedford, Mass.	. 100
KLIQ Portand,		KUZN W. Monroe. La.	1000d	WRRR Rock ford. III.	1000 d	WBRK Pittsfield, Mass.	1000
WICE Provid	5000	WLDB Portl	500	WJPS Evansvilie. Ind	5000	WLEW Bad Axe. Mit	00
	1000	worc Wore	5000	w		WLAV Grand	
WATO Oak Rid	500	WKNR Dear	硅	K	5000	WCSTE Manistee	1000
BLT Bíg Lake. Tex.	1000d	wCCW Traverse City, m	5000 d	W		WMTE Man	
KIVY Crockett, Tex.	500d	KRBI St. Peter.	1000 d	W	1000d	WMBN Pe	1000
KRgV Weslaeo. Tex.	5000	WXXX Hattiesburg.	5000	KVOL Lafayette. La.	5000	WEXL Royal Oak. Mile	1000
KTRN Wichita Falls.		KFSB Jodi	5000	WASA Havre de Grace. M	5000 d	KVBR Brainerd. Minn	1000
WPVA Colonial Hots.,	5000 d	KFB8 Grea	5000 d	WCRE Waltham. M	50	KDLM Detrolt Lakes,	1000
WAGE Leesburg. Va.	1000 d	KGMT ${ }^{\text {W }}$ K Asbur	1000 d	WTRX Fllnt. Mieh.	5000	WEVE Eveleth, Minn.	1000
WKWS Rocky mount,	$1000{ }^{5}$	WCAM Camm	1000	WLOL MInneapolls. MInn.	5000	KROC Rochester, Minn	1000
W Vow Logan.	5000	A Albu	1000d	WFTO Fulton, Miss.		KWLM WIIImar, M	1000
KAPY Port Angel WMIL Milwaukee.	1000 d	WVIP Mt. Kiseo, N, Y.	5000 d	WJPR Greenvllie Miss.	1000	WJMB Brookhaven. Mls	
WCOW Sparta, whe.	5000d	WTLB Utiea	1000	WDAL Meridlan. Miss.	$\begin{aligned} & 1000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$	WAML Laufel, Miss.	250
KDWB Laramie. Wyo.	5000	WISE Ash	00	KGAK Gall	5000	0 KXED Mex	
1300-230		WKTC	5000	WEVD New York.	000	KSGM St. Genevi	1000
13		KNOX Grand Forks, N.		WPOW New York.	5000	0 KSm0 Salem. Mo	1000
WBSA Boaz, Ala.	10000	WFAH Alliance, Onio	1000d	WEBO Owego, N.Y.	1000 d	KDRO Sedalla, Mo.	1000
WTLS Taliassee, Ala.	1000 d	KNPT Newport, Oreg	5000	WHAZ Troy	1000	KICk Sprinafield, Mo	10
EZO WInfield, Ala.	0d	WBFD Bedford	5000 d	WUSM Havelock. N.C.	1000 d	KCAP Helona, Mont.	1000
KHAC Window Rock.		WGSA Ephrata.	5000 d	WHOT Camabell, Ohlo	1000	KPRK Livingston, mo	1000
KWCB Searcy.		WNAE Warren	5000d	W FIN FIndlay, Omio	1000 d	KATL Mlles City, Mon	1000
P Brawi	1000	WDKD Kingstree, S.C	5000d	WKOV Wellston. Ohio	d	KYLT Missoula, Mont.	250
Ow Frasno	$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	WDOD Chattanogos, Tenn	n. 5000	WELW Wiliouahby, 0.	500 d	KHUB Fremont. Nebr.	
R C Pasa		WDXI Jatkson. Tenn.	3000	KPOI Portland. Oreg.		KGFW Kearney,	
		WBNT Onelda. Tenn.	$1000 d$	WBLF Bellefonte. Pa.		KSID Sidney, Nebr.	
	1000	KZ1P Amarilio. Te	1000 d	WICA Erio. P.	5000	K KORK Las Vegas,	1000
WRKT Coeoa Beach, F		WRR Da	$\begin{array}{r} 5000 \\ 1000 \mathrm{~d} \end{array}$	WFBC Greonvilis, S.C.	5000	WDCR Hanover. N.H.	1000
WFFG Marathon, Fia.	500	KBUC San Antonio.	5000	0 WAEW Crossullie. Ten	1000 d	WMID Atlantle Clity, N.	1000
WSOL Tampa, Fla.	5000 d	d KBUC San	5000	O WTRO Dyersturo. Ten	50	KHAP Aztec, N.M.	000d
WMTM Moultrie. Ga.	5000	WGH Newport'Nows, Va.	5000	KMIL Cameron, Tex.	500	KRRR Ruidoso, N. Me	1000
WNEA Newman. G		KARY Prosser, Wash.	1000d	KSWA Graham, Tex.	50011	KKIT Taos, N.Me	250
10 Winder. Ga	1000 d	WIBA Madison. Wis.	5000	0 KINE Kingsville. Tex.	1000.1	d KSIL Silver City N.	00
E Lowis	5000	WIBA Madson. W		KVKM Monahans, Tex.	000	- WMBO Aubu	000
La Gr		1320-227.1		KZAK Tyler, Tor.	1000 d 5000	\| WENT Glove	
W. Fran	5000		000	0 WBTM Danville. Va.	5000	WKSN Ja	
C Terre Haute. Ind.			50000	d WRAA Luray. Va.	100	Loek	
AAC Terre Haute. ${ }^{\text {GLO }}$ Mason City,	5000	0 KELU Yuma. Ariz.	500 d	d WOLD Marion, Va.	1000 d 5000 d	W WhL Mlddiotown,	
WBLG Lexington, Ky .	10	KWHN Fort Smith. Ark					

MHITES RADO L(OG
kHz WIRY Plattsburgh, N.Y WJRI Lenoir. N.C. WTSB Lumberton. N.C.
WOXF Oxtord, N.C. Woxf oxiord, N.C WOOW Greenville. N.C. WAlR WInston.Salem, N.C. KGPC Grafton, N.Dak. WNCO Ashland, 0 . WOUB Athens, Ohia
WIZE Springfield. Ohio WIZE Springfield. Ohio
WSTV Steubenvlife, Ohlo KIHN Huoo. Okla. KOCY Okla, City. Okla. KTOW Sano Springs, Okla. KLOO Corvallis, Ore. KWVR Enterprise. Oreg.
KIHR Hood River, Oreg. KBBR N. Bond, Ore WCVI Connallsvilfe, Pa WSAJ Grove CIty.
WKRZ Oll CIty,
WHAT Phil WHAT Phlladelphla, Pa. WRAW Reading Pa WBRE Wilkes - Barre. Pa. WWPA Williamsport. Pa. WUNA Aquadilla, P.R.
WOKE Charleston, S.C. WRHI Rock HIII, S.C. WSSC Sumter, S.C. KRSD Rapid City. S. Dak. WBAC Cleveland. Tenn. WKRA1 Columbla, Tenn.
WGRV Greeneville. Tenn. WGRV Greeneville. Tenn.
WKGN Knoxville, Tenn. WKGN Knoxville, Tenn.
WLOK Memahis, Tenn. WCOT WInahester. Tenn. KWC Abllone. Tex KTSL Burnett, Tox. KSET EI Paso. Tex. KLBK Lubbock. Tex. KPDN Pampa. Tex. KOLE Port Asthur, Tos KTEO San Angolo. Tex. WTWN ot Tex. WSTA Charlotte Amaile. V.I WHEY Covington, Va. WJMA ORDEWE V KAGT Anacortes, Was KGGT Anacortes, Wash. KAPA Raymond, Wash. KMEL Wenafchee. Wash. WHAR Clarksburg, W.Va. WEPM Marilnsburg. W. Va WMON Montgomery. WLDY Ladysmith, Wis, WRIT Mllwaukee. Wls. KYCN Wheatland, Wy KWOR Worland, wyo.

1350-222.1

WELB Elba. Ala.
WGAD Gadsden. Ala WGAD Gadsden. Ala.
KLYD Bakerafleld, Call KCKC San Bernardlino, Cal. KSRO Santa Rosa. Callf. KKAM Pueblo. Colo.
WNLK Norwalk. Conn.
WINY Putnam. Conn WINY Putnam. Conn
WEZY Cocoa, Fla. WECF Docoa, FIa. WCAI Ft. MyArs, Fla. WBSG Blackshoar, Ga. WAVC Warner Roblns KRLC Lewiston. Ida. WXCL Peoria. III. Wiou Kokomo, Ind. KRNT Des Molnes. Iowa Kans WLOU Loulsville. Ky. WHMB New orleans. La KD10 Ortenvilie. Minn WCMP Pine City, Minn. WKCU Corinth, Miss. WKOZ Kosclusko, Miss KCHR Charleston. Mo. KBRX O'Nelil. Nebr.
WLNH Laconla. N.H.
$\begin{array}{r}500 \mathrm{~d} \\ \hline\end{array}$ 500 d
1000 d

kHz Wave Length W.P.|kHz Wave Length

 WHWH Prineeton, N.J. 5000 WFDR Manchester, Ga. KABQ Albuquerque, N.M. 5000 WLOV Washington, Ga. WRNY Rome. N.Y.Y. WBMS Black Mountaln. NWHIP Mooresville, N.C KBMR Bismarck, N. D WSLR Akron, O.
WCSA Celina. Ohlo KRHD Duncan, Okla. KTLQ Tahtequat, OkJa KRVC Ashland, Oreg. WORK York. Pa. WDAR Darlinoton, S. W GSW Greenwood. S.C. WRKM Garthade, Tenn. KCAR Clarksvifle. Tex. KTXJ Jasper, Tex.

KCOR San Antonio WBLT Bedford. Va.

 WNVA Norton, Va. WAVY Portsmouth. Va
$1360-220.4$

500 d

$\mathrm{~N} . \mathrm{C}$ | $500 d$ | W |
| :---: | :---: |
| 500d | IS |
| I | | lo00d KGNO Dodge City. Kans. 1000d KALN Iola, Kans

5000 W ABD Ft. Campbell, Ky.
5000 WGOH Graysen, Ky. 5000 WGOH Graysen, Ky 500d WTKY Tompkinsville, Ky. 1000 W WDEA Ellsworth, Me. 1000 d WKIK Leonardtown, Mid. 1000 d KSUM Fairmont, Minn. 1000d WMKT S. St. Paul. AIInn. 1000d KWRT Boonville, Mo. 500d KCRV Caruthersville, Mo. 5000 KXLF Butte. Mont 000d WFEA. Yark. Nebr 0000d WFEA Manchester, N.H. 1000d WELV Ellenville, N.Y. $\begin{aligned} 5000 \mathrm{~d} & \text { WALK Patchogue, N.Y. } \\ 5000 & \text { WSAY Rochester, N.Y. }\end{aligned}$ 5000 WSAY Rochester, N.Y. WTAB Tabor' City. N.C. KFJM Grand Forks. N. WSPD Tolede, Ohlo
KVYL Holdenville, Okla.
KAST Astorla, Orea. KAST Astorla, Orea.

1000
1000
1000 WOTR Corry, Pa. WPAZ Pottstown. Pa. WKAIC Rearing Spres.d Pa. WIVV Vioques, P.R.
WKFD Wickford. R.I. WKFD Witkford, R.I,
WDEF Chattanooga, Ten WDXE Lawrenceburg, Tenn. WRGS Ropersville, Tonn, KOKE Austin. Tox. KFRD Longview, Tex KPOS Past, Tex. KSOP Salt Lake City, U tah WBTN Bennington, VE WHEE Martinsvilis. Va. WJWS South HIIf, Va. KPOR Qulncy. Wash. WEIF Moundsville. W, Va. KVWO Cheyenne. Wyo.

1380-217.3

$1000 d$
5000
$500 d$

100

 l000d ICDXE Vornon. Ala. 1000 d KBVM Lancaster, Callf.1000d K GMS Sacramento. Calle 500d KSBW Salinas, Callf. 5000 d KFLI Walsenburg. Colo.
1000 d WOWw Natgatuck Conn. $500 d$
WAMS Wilmington, Dol. $500 d$
5000 W LIZ Lake Worth, FIa, 1000 d 1000 d 1000 d WLCY Si. Petersburg. Fla. 1000 WAOK Allanta. Ga
1000
5000
5000
1000 d
1000 d
$\begin{array}{r}1000 \\ \\ 500 \\ \hline\end{array}$
5000
5000
$500 d$
1000 d
5000
5000
5000 10000 1000 d
5000 d
1000 d 1000 d

5000

5000

1000 dt
 1000

MMITE＇S

RADO LOG

kHz Wave Length

WHTC Holland，Mich． WMBM Jron Min．．Mlch． WKLA Ludlngion Mich． W NBY Newberry．Mich． WHLS Port Huron，Mile KATE Albert Lea．Minn． KBUN Bemidji，Minn． KBMW Wahpeton．N．O．． Efy．Minn． KFAM St．Cioud，Minn． WROX Clarksdale，Miss， WIXN Cackson．Milss WOKK Merlitian．Miss． WNAT Natchez，Miss． KFTW Fredericktown．Mo WMBH Jonlin．MO． KIRX Kirksvilie．Mo．
KOKO Warrensbury， KOKO Warrensbury，Mo． KXXL Bozeman，Mont．
KUOI Great Fails，Mont KGMY Missoula，mont． KRBN Red Lodie．Mont． K VCK Wolf Point，Mont． K K BE Beatrice．Nebr． KONE Reno．Ne．Ne．
WKXL Concord．N．H． WFPG Atlantio City，N．J． WCTC Now Brunswick，N． KRZY Albuquerque．N．M
KLM
Clayton．N．Mex． KOBE Las Cruces．N．Mex． KENM Portales．N．Niex． WCLI Corning，N．Y． WHOL Gien Falls．N WKIP Poughinensís． WKAL Rome，N．Y ．
VGNC Gastonla．N．C．
WI2S Hendersan．N．C． C ．
WHKP Hondersonvilie．
WHIT New Bern．N．C． WFBS Suring Lake．N．C． WJER Dover，Ohio WLEC Sanduaky，Ohlo WLEC Sandusky．Ohlo
KWHW Altus．Dkla． KGFF Shawnee，Okla KEED Eugent．Ore KEED Eugen．Ore． KFLW Klamath Falls，Ore． KBPS Portland，Ore． WFRA Franilln，Pa， WPAM Pottsville，Pa WMAJ State Collemport．Pa． WJPA Washington．Pa WCPR Coamo．P．R． WQSN Charlaston，S．R．
WCRS WMYB Myrtio Beath． WHSC Hartsville，S．C． KYNT Bene Fourehe，S．Dak． WLAR Athens．Tenn． WMOC Chatt ${ }^{2}$ Tenn．Tenn
WDSG Oyershurg．Tenn． WSSG Oyarshurg．Tenn． WLAF LaFollette Tenn． WGNS Murfreeshoro，Tenn． KAYC Murimeshoro，${ }^{\text {K }}$ KBEN Carrizo Spras．。 Tax KMBL Junction．Tex． KCYL Lampasas．Tex． KMHT Marshali，Tex． KAMY MeCamey，Tex KANY MeCamey，Tox． KSNY Snyder，Tex
KURA Moaber，Utah．
EYY Provo，Utah
KOXU St．Genrge，Utah WTSA Brattlehoro
WFTR Erant Royal Vt．
WENZ Highland Sprlngs．
WREL Loxington．Va．
WLPM Suffolk，Va
100
25
100
1000d

｜kHz Wave Length W．P．｜kHz Wave Length
KBKW Aberdeen，wash． 1000 WTKO Ithaca，N，Y KCLX Colfax．Wash．
KONP PPort Angeles，wash， KDNP Port Angeles，Wash． 250 WPDM Potsdan．N． KAYE Puyallun，wash． 1000 WBIG Greenshoro．N．C WPAR Parkersburg．W．Va． 1000 WTDE Spruce PIno，N．C KFIZ Fond du Lac．Wis． 1000 WOHO Toledo，Ohlo
WOLB Marshfeld，Wis． 1000
KVLH WPFP Park Falls，Wls． 1000 KVLN Pauls Valley，Okla WRCO Richland Center，wis． 1000 KRAF Reedsport KVOW Riverton，wyo． 250

1460－205．4

10000
1000
1000
250
250
$\begin{array}{r}250 \\ 1000 \\ \hline\end{array}$
250
1000
1000
1000
1000
1000
1000
1000
1000
1000
WXOK Baton Roung． WESF Springhill，La WBET Easton，Md． WBRN Big Rapids，Mich KOON Pontiac，Mich． KOMA Montal． WELZ Belzonl．Miss． WACY Moss Point．Mis KADY St．Charles，Mo． KENO Las Vegas．Nev． WJJZ Mt．Holly．N．J． WOKO Albany，N．Y， WHEC Rochester，N． Y
WFVGY． Y ．
WRKB Kannapolis, ${ }^{\text {N.C }}$.
WM M Marshall.
WBNS Columbus. N.C
WPVL Painesvilie, 0 .
KROW Dallas. Orég.
KELR EI Reno, Okla.
WCMB Harrisburg Pa.
WFBA Sarrisburg, Pa.
WBCU Unlon. S.C.
WJAK Jackson, Tann.
WEEN Lafayon. ${ }^{\text {Whn }}$
KBRZ Freeport, Tex
KLLL Lubbock. Tex.
WACO Waco, Tex.
WPRW Manassas, Va.
WRAD Radford. Va.
KYAC Kirkland, Wash.
KIMA Kirkiand, Wash.
WBUC Buckhannon, W, Va.
WRAC Racine, Wis.
WTMB Tomah, Wis.

1470－204．0

WBLO Evergreen，Ala KOLI Coallinga，Callf． KXOA Salmdate．Cal． KKEP Etos Park，Colo．
WMNW Meriden，Conn WMBO Meriden，Conn WRBD Pompano Beach，Fla．
WCWR Tarpon Springs．Fla． WAAG Adel．G WOOL Athens，Ga． WRGA Claxton，Ga． WRGA Rome，Ga， WMPP Chleago Helohts，III． WMBD Peorla，III． KHRI Anderson，ind． KWVY Waverly，lowa KARE Atchison，Kans． KLIB Liberal，Kans． KLIB Liberal，Kins． KSAC Fort Knox．Ky，
KTDL Farmorsvilis，La． KPLC Lake Charlus．La．
WLAM Lewiston，Maine WLAM Lewiston，Maine WTTR Wafisbiry．Md． WSRO Marlborough，Mass． WNBP Newburyport，Mass WKMF Flint，Mich． KAND Anoka，Minn． KAND A noka，Minn．
WCHI Brook haven．Miss． 1000 WNAU Now Albany，Miss 000 KGHM Brookfield．Mo．

5000 d
WSAN Allentown．Pa． WFAR Farrell．Pa． WWML Portage，Pa
WOXL Columbia，S．C． WINH Georgetown．S．C
WEAG Alcoa．Tenn． WEAG Alcoa．Tenn．
WVOL Berry Hill，Tenn WVOL Berry Hill，
KRBC Ablicia，TBex．
KOHN Dimmitt．Tex KOHN Dimmitt，Tex．
KWRD Henderson．Tex KWRO Henderson．Tex．
KCNY San Marcos，Tex． KCNY San marcos，Tex
WTZE Tazewelf，Va． WTZE Tazeweli，V
IKELA Centralia．

Chehalis． KSEM Moses Lake．Wash． 5000 d KAPS Mount Vernon．Wash． 5000 WWHY Huntington．W．Va．5000d WBKE Wheeling．W．Va．

1480－202．6

WARI Abbeville．Ala． WBTS Bridpepert．Ala． WABE Moblle．Ala． KGLU Safford，Arlz IGTHS Berryvilis．Arlz． KWUN Concord，Callf． KYOS Merced．Calif． Kwiz Santa Ana，Calif． KSEE Santa Marla．Calif． KCMS Manitou Springs，Colo
olo．

1000
100
5
100
1000
50
50
50
10
10
100

WSOR WIndsor，Conn．

 WAPG Arcadia，Fla． WGNE Panama Beach．Fla． WVCF Windermere，WYZE Atlanta，Ga． WROW Augusta Ga WGSB Geneva，Ill． WTHI Terre Haute，Ind WRSW Warsaw，Ind． KLEE Otfumwa，Iowa KBEA Mission，Kan． WKOA HopkInsville，Ky． WNKY Neon．KY． WTLO Somerset，Ky KANV Jonesvile KJOE Shreveport，La． WSAR Fall River，Alass WMAX Grand Rapids． WIOS Tawas City，Mich
WYSI Ypsilanti，Mleh． KYSI Ypsilanti，Mieh KEHG Fosston，Minn． WECP Carthage，Miss KGCX SIdney，Mont KLMS Lincoln，Nebr． KWEW Hobbs；N．Mex WLEA Hornell．N．Y． WHOM New York．\dot{N}.
WAOR Renisen， WAOR Remisen，fi．Y．
WWKO Fair Bluff． WWOK Cair Bluff．N．C．
1000 d
500 d
WYRN Louisburg．
WMSI Sylva．
WHBC Canton．O．
WCIN CInclnnati，Ohio WTRA Latrobe，Pa．
WOAS Phil WOAS Phlladelphia，P WISL Shamokin．Pa． W SHP Shlppenshurg， WMDO Fajardo，P．R KSOR Waterton．S．D． WJFC Jefierson City．Tenn WMQM MAmphis．Tenn． WjLE Smithvillo．Tenn KBOX Dallas．Tex． KLVL Pasadena．Tex KAPE San Antonlo，Tex． WCFR Snamish Fork．Utah WCFR Springfield．Vt WBBL Bichmond．Va． WLEE RIchmond，V a WBLU Salem，Va．

KFHA Lakewoed Center，

 Wash．
KVAN Camas．Wash． WISM Madison．Wis． WISM Madison，Wis．

 KRAE Cheyenne，Wyo
1490－201．2

WANA Anniston，Ala． WAJF Decatur．Ala． 1000 d
500 d
WRLO Laneft．Ala．
WHB Salma．Ala． 500 d WYBA Salma．Ala． loood KAlR Tucson．Ariz．
$W . P$
100
1000
500
100
100
100
25
50
5000
500
1000
500
5000
1000
1000
5000
500
500
500
$250 d$
1000 d
$5000 d$
5000
$500 d$
$5000 d$
$500 d$
$1000 d$ 1000 d
500 d
Ky．

1000
$500 d$
5000
1000
50
100
5000
$1000 d$ 1000 d ieh． 5 5000 d
1000 d
\qquad
5000
$500 d$ ${ }_{\square}$ 10

5000 5
 1000 d

W W W WF

ex．

5000d KO

1000 d
 000d 5000

1000d

250 1000

1000
1000
1000
1000
1000
1000
1000
250

Od
 KXAR Hope，Len DRS Paragould．Ark． 1000 $\begin{array}{ll}\text { KOTN PIne Bluff，Ark．} & 1000 \\ \text { XRJ Ris } & 1000\end{array}$ $\begin{array}{ll}\text { XRJ Russellville，Ark．} & 1000 \\ \text { WAC Bakersfield，Calif．} & 1000\end{array}$ $\begin{array}{lr}\text { KPAS Banning．Calif．} & 1000 \\ \text { KICO Calexico，Calli．} & 250\end{array}$ KRKC KIng City，Calif， 1000
KTOB Petalunin Calif． 1000 KTOB Petalumn，Calif． 1000
KBLF Red Blufi，Calif． KDE Santa Barbara，Calif． 1000 $\begin{array}{ll}\text { KOWL So．Lake Tahoe，Cal．} & 250 \\ \text { KSY Yroka，Calif．}\end{array}$ $\begin{array}{ll}\text { KBDL Boulder，Colo．} \\ \text { KGUC Gunnison，Cofo．} & 2500 \mathrm{~d}\end{array}$ KCMS Manitou Springs，Colo． WGCH Sterling，Colo． 500
250 WTRL Greenwich．Conn． WJBL Bradenton．Conn WIRA Ft．Pierce． WhB Immokalie，Fla， WSRA Miami Beach，Fla． $\begin{array}{r}250 \\ 250 \\ \hline\end{array}$ WSRA Mliton，Fla． WTTB Voro Boach，Fla，
WSIR Wintor Haven，Fia． 1000
000
500 WSFE Monrob．Ga． 100 1000
1000
0000
250 WSNT Sandersville，Ga．$\quad 500$ 000 KTOH Lihue，Hawali 250 00 WKROCaldwell．Idahn 1000 WKRO Cairo illl． WA AIV East St．Loulis，III． WOPA Dak Park．III．
WZOE Princeton WZOE Princeton．IIt． WKBV Richmond，Ind，
WNOU South Bend Ind KBUR Burlin Bend，Ind．

WDBO Duton．Iowa	500 d	WDBQ Dubuque，Jowa	1000
000 d	KBAB Indinnola，Ia．	1000	
500 d			000d KKAN Mason City，Ia． 1000 $\begin{aligned} & 5000 \mathrm{~d} \\ & 5000 \text { KTOP Topeka Kan．Kans．}\end{aligned}$ $\begin{array}{llr}1000 \\ 500 d & \text { WKAY Glaspow．Ky．} & 1000 \mathrm{~d} \\ 5000 & 1000\end{array}$ $\begin{array}{lll}500 \mathrm{~d} \\ 5000 & \text { WOM Owensboro，KY．} & 1000 \\ & \text { WSIP Patntsvill Ky．} & 1000\end{array}$ 000 WikC Bogalusa．La． 1000 KEUN Eunice，La． 1000 $\begin{array}{ll}\text { KEUN Eunice，La．} & 1000 \\ \text { KJNN Houma，La．} & 1000\end{array}$ 5000 KRUS Ruston．La， lo00d WTVL Waterville，Malne WARK Hatervilie，Malne 1000

1000

WAB」 Adrian．Mich Mass． 1000 d 1000 d WLRC Whitehall，Mich．
500 K
KXRA KOZY Grand Rapids，Minn． KLar Redwd．Falls，Minn． 1000
WLOX Blloxi．Miss， WCLD Cleveland，Miss． $\begin{array}{ll}\text { WHOC Phlladelphla，Miss．} & 1000 \\ \text { WTUP Tupelo }\end{array}$ WVIP Tupolo，Miss． WVIM Vtcksburg．Miss
KDMO Carthage．Mo． KTTR Rolla，Mo． K ORO Sedalla．Mo KOBM Dillon，Mont．
00 J KBON Omaha，Nebr． $\begin{array}{ll}\text { WEMJ Laconia，N．H．} & 1000 \\ \text { WLDB Allantls Cily．N } & 1000\end{array}$ 5000 KRSN Los Alamos．N．J． 1000 500 d KRTN Raton．N．Mex．Mex． 1000 $\begin{array}{lll}5000 & \text { WCSS Amsterdam．N．Y．} & 1000 \\ 1000 & \text { WBTA Batavia，N．Y．} & 250 \\ 500 \mathrm{~W} & \text { WKNY KIncesion }\end{array}$ WKNY KInsion，$N, Y, \quad 1000$
WICY Malono，N，Y， 1000 1000
1000

5000 WLOE Fayetteville，N．C． 1000
1000 WRNE New Bern，N，C． 1000
（000d WRMT Rocky Mount。 N．C． 1000
0000 WSVM Valieset，N．C．C． 1000
5000 WHSL Wlimington．N．C． 1000

WHITEES
 LOG

kHz Wave Length

 KIRT Mission. Tex. KTLU Rusk. Tex. KWED Seguin, Tex. KBYP Shamrock. Tex. KBGO Waco. Tex. WILA Danville, Va.WPUV Pulaski, WTTN Watertown, wis.

1590-188.7

WATM Atmore, Ala. WBIB Centerville, Ala. WYNA Tuscumbia, Ala. KPBA Pine Bluft, Ark. KSPR Springdale, Ark KLIV San Jose, Cal. KUOU Ventura, Cal. KCIN Vietorvilife. Calif WARV Warwick.
WBRY E. Greenwleh Conn. WILZ St. Petersburg Beach. WELE S. Daytona Beh.. WALG Albany, Ga. WLFA Lafayelte, Ga. WNMP Evanston. III. WAIK Galesburg, ill. WGEE Indianapolis. Ind. WPCO MI. Vernon. Ind, KWBG Boons, lowa KVGB Great Bend, Kant. WLBN Lebanon, Ky. KEVL Whlte Castle, La
WETT Ocean City. Mid. WTVB Coldwater. Ailen WSMA Marine City Mich. WMIC St. Helen, Mich. WWUN Jackson, Miss. ${ }^{\text {M }}$ KDEX Dexter, Mo. KPRS Kansas City, Mo. KCLU Rolla, Mo. WSMN Nashuaf N.H. WERA Plalnfield, N.J. WAUB Auburn, N.Y. WEHH Elmira Helohts. WGGO Salamands, N.Y. WGGO Salamanea, N. \dot{Y}. WBHN Bryson City, N.C

Canadian AM Stations by Frequency d, operates daytime only; n, operates nightime only. W abs: $k H z$, frequency In kilocyeles; W.P., power in watts:
Canadian stations lisfed alphabericaly by call $\begin{gathered}\text { detters within operates daytinie only; } n \text {, operates nightime only. Wave length is given in meters }\end{gathered}$

kHz Wavelength	. P	kHz Wave Length	W	kHz Wove Length	w.	. kHz Wave Length	N.P.
540-555.5		508.2					
CBK Regina, Sask.	50.000	CFAR Flin Flon, Ma		CBN St John's, Nfd		800-374.8	
CBT Grand Falls, Nfld.	10.000	CFAR Flin Fion, man	$10,000 \mathrm{~d}$	CBN St. John's, Nfid	10,000	FOB Fort Frantes, Ont,	1.000 d
-545.1			10.000 d 5.000 n	-440.9		HAB Moose Jaw, Sask.	10,000d
CFBR S	1.000d	CKRS Janquiere, Que. CFTK Terrace B	1.000	CHFA Edmonton, A	5.000		5.000 n 50000
CFNB Fredericton, in.B.	50,000	vocm St. John's, Nifd.	1,000 10,000	to,	$\begin{aligned} & 1.000 \mathrm{~d} \\ & 10,000 \mathrm{n} \end{aligned}$	CJAD Montreal, Que.	50,0000
N Trors-Rivieres, Que.	$\begin{array}{r} 10.000 \mathrm{~d} \\ 5.000 \mathrm{n} \end{array}$	600-499.7		CHLO St. Thomas, Ont.	1,000		10,000n
KPG Prineo George, B.C.	c. 10,000	CFCF Montreal,	5.000	CJOB Winnipeg, Man.	$\begin{array}{r} 10,000 \\ 10,000 \mathrm{~d} \end{array}$	CJLX Fort william, Ont.	10,000d
560-525.4		CFCH Callan	$10,000 \mathrm{~d}$ 5.000 n	CKGB Timmins, Ont.	$2,500 \mathrm{n}$ 10	Ckok Panticto	$5,000 \mathrm{n}$ $0,000 \mathrm{~d}$
CFOS Owen	1,000	CFQC Saskatoon, S CJOR Vancouver. B	5.000 10.000	690-434.5			${ }_{500 \mathrm{n}}$
CHCM Marystown,	1.000 d 500 n	CJOR Vaneouver. B CKCL Truro, N.S.	10,000 1,000	CBF montreal, Qu		CKLW Winds	$50,000$
CHTK Prince Rupert, B.C.	$\begin{array}{r}\text { 1.000 } \\ \\ \hline 000 \mathrm{~d}\end{array}$	610-491.7		CBU Vancouver,	$\begin{aligned} & 50,000 \\ & 10,000 \end{aligned}$	$810-370.2$	
CJKL Kirkland Lake, Ont.	250	CHNC New Carlis		710-422.3		CHQR Caluary,	10,000
CKCN Sept-lles, Que.	10,000d		5,000n	CJSP Lamingto	1000 d	850-352.7	
	5,000n	CJAT Trall, B.C.	1,000 1,000	CFRG Gravelhouro, Sask.	5,000d		
NL Fort St. John, B.C.	1,000	CKML Mont	1.000 1.000	Ckvm Ville-Marie, Que.	$10,000 \mathrm{~d}$	CKRD Red Deer, Al	$\begin{array}{r} 1,000 \\ 10.000 \mathrm{~d} \end{array}$
-5		CKTB St. Catharines, Ont.	$10.000 d$	csox Grand Bank, Nfld.	1.000	KV	1.000n
CB	1.000	CKYL Peace River, Alta.	10,000d	730-410.7			10,000n
EM Edmu	5.000 d		1:000	CJNR Blind River, On		860-348.6	
ckca Q	$1.000 n$ 1.000	620-483.6		CKAC Montreal, Que:	50,000	CBH Halifax, N.S.	10.000
CKEK Cranbrook.	1,000	CFCL Timmins,	10,000d	CKDM Oauphin, Man	10.000 d	CFPR Prinee Rupe	10.000
WH Whitehorse.	1,000		5.000 m	C	5,000n	OHAK Inuvik, N.W.	1.000
580		CKCM Grand Falls, Nild.	$\begin{array}{r} 5,000 \\ 10,000 \end{array}$	c	$10,00$		50,000
CFRA Otlawa, Ont 50	50,000 d	63		740-405.2			
c Hauterive, Que. 10	10.000	CFCO Chatha		C		CHNO Sudbury, Ont.	10,000d
C				CBX Edmonton, Alt	50.000		1.000n
	10.000		10.0	790-379.5		CJVI Victoria, B	10,000
CKPR Kapuskasing, Ont.	5.000 1.00	CHED	10,000	CFDR Dartmouth, N.S.		CKBI Prince Albert,	10,000
	5,000d		10,000	CFCW Camrose, Alta	10.000	CKOR Dryden, Ont.	1,000d
CKUA Edmonton, Alta.	10,000	CJET Smiths		CKSO Suwhury	1,000	CKDH Amherst. N.S	1,000
CKWW WIndsor, Ont. CKXR Salmon Arm. B	500	CKAR Huntsvil	1,000	Ckso sudbury	$\begin{aligned} & 10,000 \mathrm{~d} \\ & 5,000 \mathrm{n} \end{aligned}$	CKJL St. Jor	,000
CKY WInnipeg, Man. ${ }^{\text {c, }}$	50,000	CKRC	10.0	CHIC Brampion, Ont.	1,000d	CKVD Val $\mathrm{D}^{\prime} 0$	1.000 0.000 d
					soun		$\begin{array}{r} 0.000 d \\ 2.500 \mathrm{n} \end{array}$

Are your home-town AM stations listed correctly in White's Radio Log? If you believe there is a correction to White's listings, please check first with your local station. For each callsign obtain the correct city location, frequency, and power. (Remember, even though your local paper may list a station as a "home-town" station, it may be officially licensed by the FCC for operation in the next city.) Get all the facts on a piece of paper (be very brief), include your name and address, and mail to White's Radio Log, Radio-TV Experimenter, 505 Park Ave., New York, N. Y. 10022. Your help in contributing to the accuracy and completeness of White's Radio Log will be sincerely appreciated.
-Editor

U. S. Television Stations by States

U. S. stations llsted alphabetically by cities within state proups. Territories and possesslons follow states. Chan., channel; C.L., call letters.

Location	C.L. Chan.
Norfolk Petershurg. RIchmond	WTAR-TV 3
	W
	WXEX.TV 8
Portsmouth ${ }^{\text {Portsmouth-Norlolk }}$	\#WYAH-TV 27
	WAVY-TV 10
Richmend	WTVR-TV 6
	WRVA.TV 12
	tWCYE.TV 23
	+wCVw 57
Roanoke	JWBRA-TV 15
	WDBJ.TV ?
	WSLS.TV 10
	WRFT.TV 27

WASHINGTON
Bollingham

Location	C.L. Chan.
Paseo Puilman Richland Seattle	KEPR.TV 19
	†KWSC.TV 10
	KNDU 25
	KOMO-TV 4
	KING-TV 5
	KIRO-TV + KCTS-TV
8mokan*	†KCTS-TV ${ }_{\text {KREM.TV }}$
	KXLY-TV 4
	KHQ.TV 6
	†KSPS-TV ?
Tacoma-Seattle	KTNT-TV II
Tacoma	KTVW 13
	\dagger KPEC.TV 56
	\dagger ¢TPS 62
Yakima	KNOO 23
	KIMA.TV 29
	†KYVE-TV 47

Bluefleld

Charleston
Clarksbury
Charleston
$\begin{array}{ll}\text { WHIS-TV } & 6 \\ \text { WCHS-TV } & 8\end{array}$ WBOY-TV 12

WSAZ.TV 3

Location
Oak Hilt
Parkershurg.
Marietta. 0.

Weston
 Whealing Stelubenville. 0

WISCONSIN

Eall Claire

LaCrosse
Madison

Rhínelander
Wausau
C.L. Chan. Location C.L. Chan. WOAY-TV 4 WYOMING
WTAP.TV 15 Casper
KTWO.TV
KFBC.TV
5 KWRB.TV 10 gUam
Agana KUAM.TV s PUERTO RICO
Aquadilla WOLE-TV i^{2} Mayaguez WORA.TV
Ponce WIPM.TV
WRIKTVV
WSURTV
WSUR
San Juan WKAQ.TV
WAPA-TV ${ }^{4}$

WITA	30
WTSS	18

WITA-TV 30

VIRGIN ISLANDS

Charlotte Amalle WBNB.TV 10

Canadian Television Stations by Cities

World-Wide Shortwave Stations

E Once again we take off on our big DX contest-the one without the prizes-but also the one that separates the novices from the know-it-alls. Take a whack at these and see how you do:

1. Hooray! Several DX'ers have reported hearing the Voice of the U.N. Command at Deragawa, Okinawa-long an elusive exclusive DX catch. Look for it on 9845 kHz around 1130 GMT .
2. How about a rather hard-to-hear country: Spanish Sahara? They're on the standard broadcast band just to make things more difficult, but they're running a shiny new 50,000 -watt rig to help you along. Schedule is 0900 to 1300 and 2000 to 2400 GMT.
3. How many ship stations can you log in a 30 -minute period on 2738 kHz ? That's an intership channel.
4. New country? Try on Biafra, a breakaway state in Western Africa-might be a short-lived one too. As of this writing, they're on the air as the Voice of Biafra from Enugu. Watch for them on 4855 kHz (also 4775 kHz) at 1830 to 2230 GMT .
5. You'll adore Andorra if you hear their

kHz	Call	Name	Location	GMT
	90-Meter Band- 3200.3400 kHz			
$\begin{aligned} & 3230 \\ & 3990 \\ & 3995 \end{aligned}$	VRH8 VQO4	Fiii I. BC V. America \qquad	Suva, Fiji Is. Monrovia, Liberia Solomen ls.	$\begin{aligned} & 0400 \\ & 0700 \\ & 1010 \end{aligned}$
	60-Meter Band $-4750-5060 \mathrm{kHz}$			
$\begin{aligned} & 4870 \\ & 4872 \\ & 4890 \\ & \\ & 4915 \\ & 4923 \\ & 4940 \\ & 4955 \\ & 4965 \\ & 5025 \\ & 5030 \end{aligned}$	$\overline{T G Q H}$ VLK4 $\overline{H C Q R I}$ HJCO HJAF YVKM	R. du Dahomey R. Santa Cruz R. Senegal Australian BC R. Ghana R. Quito R. Abidjan R. Nacional R. Santa Fe V. Amazona R. Continente	Cotonou, Dahomey Santa Cruz, Guat. Dakar. Senegal Port Moresby. Papua Accra, Ghana Quito, Ecuador Abidian, Ivory Coast -Bogota, Colombia Bogota, Colombia Manaus, Brazil Caracas, Venez.	$\begin{array}{r} y 0530 \\ 0135 \\ 0610 \\ 0905 \\ 0550 \\ 2230 \\ 0600 \\ 0030 \\ 0515 \\ 0345 \\ 0710 \end{array}$
	49-Meter Band-5950-6200 kHz			

$5970-$	R.Canada	Montreal, P.Q.	0900
$5985-$	R.Portugal	Lisbon, Port.	0310

shortwave transmitter on 6065 kHz and 6190 to 6200 kHz . Would you believe 1300 to 1600 GMT?

Now for the scoring, each item (except number 3) earns you 20 points. For number 3, score 1 point for each station logged.

If you score 20 you're in sad shape, 40 you show promise, 60 -means you're on the ball, 80-fantastique! 100-we don't believe you!

This Issue's Contributors

Wilfred Adams, New Hope, Pa.
Bennie Martino, Brooklyn, N. Y. Al Schwartz, Olympia, Wash. Fred Nottingham, Ardmore, Okia. James Gibson, Kew Gardens, N. Y. Richard Curtis, Ft. Valley, Ga. Kerry Matthews, Miami Beach, Fla, N. LaRosa, New York, N. Y. Phil Ohman, Vancouver, B. C. Martin Kortlander, Buffalo, N. Y. Ted Arndt, Cleveland, 0. William Crosby, Chicago, III. Donald Brownson, Alliance, 0 . Tom Kneited, New York, N. Y. Sy Reynolds, Atlanta, Ga. Bariy O'Brien, Salt Lake City, Utah Steve francisco, El Paso, Tex. Irwin Morton, Montreal, Que. Greg Hobart, Fargo, N. D. Charles Cotton, Augusta, Ga. Russel Cook, Ottawa, Ont. Thor Nordstrom, Minneapolis, Minn.

WHz	Call	Name	Locaflon	GM ${ }^{\text {P }}$
5990	TGJA	R. Nuevo Mundo	Guatemala City. Guat.	0045
6000	PRK5	R. Inconfidencia	Belo Horizonte	0015
6005	CFCX		Montreal, P.Q.	2000
6010	YSS	R. Nacional	San Salvador, El Sal.	0505
6035	-	R. Globo	Rio de Janeiro	2345
6040	HJCB	V. del Tolima	tbaque, Colombia	0350
6065	PRL8	R. Nacional	Rio de Janeiro. Braz.	0625
6070	CFRX	R.	Toronto, Ont.	0920
6075		R. RSA	Johannesburg, S. Africa	0500
6082	OAX6Z	R. Nacional	Lima, Peru	0300
6085	ZYK2	R. Jornal	Recife, Brazil	2340
6090	HISD	R-TV Dominicana	Santo Domingo, D.R.	1045
	VLI6	Australian BC	Sydney, Austral.	1025
6100	DMQ6	Deutsche Welle	Cologne, W. Germany	0005
6120	-	Swiss BC	Berne, Switz.	0545
6130	CHNX		Halifax, N.S.	0900
6135		R. Habana	Havana, Cuba	0415
6150	VLR6	R. Australia	Melbourne, Austral.	1035
6180	$\bar{\square}$	BBC	London, England	0400
6215	TIHBG	R. Reloi	San Jose, C.R.	0130
6257	-	R. Centinela	Loia, Ecuador	0235

41-Meter Band- $7100-7300 \mathrm{kHz}$

31-Meter Band— $9500-9775 \mathrm{kHz}$

$\begin{aligned} & 9500 \\ & 9505 \end{aligned}$	CE950 PRB22	R. Corporacion NHK	Santiago, Chile Tokyo, Japan Sao Paulo, Brazil	$\begin{aligned} & 0345 \\ & 0900 \\ & 0935 \end{aligned}$
9510	YVXJ	R. Barquisimeto	Barquisimeto.	
		R. Barquisimero	Eraz.	1120
9515	XEWW	V. America Latina	Mexico City, Mex.	0115
9520	ZLI8	V. New. Zealand	Wellington, N.Z.	0730
	-	V. America	Tangier, Morocco	2235
9525	-	R. RSA	Johannesburg,	
			S. Afr.	2135
9530	VUD	All India R.	Delhi, India	2330
9535		Swiss BC	Berne, Switz.	2310
9540	ZL2	R. New Zealand	Wellington, N.Z.	1115
9580	-	R. Australio	Melbourne, Austral.	1000
9590	-	R. Nederland	Bonaire; Neth.	
9595	JOZ3	Nihon BC	Tokyo, Japan	1045
9600	CE960	R. Presidente	Santiago, Chile	2320
9605	DMQ9	Deutsche Welle	Cologne, W. Germ.	0250
9810	VLX 9	Australian BC	Perth, Austral.	1120
9615	VUD	All India R.	Delhi, India	1130
	-	V. America	Tangier, Morocco	0530
9625	-	BBC	London, Enigland	0545
	4×851	Kol Yisrael	Tel Aviv, Israel	2020
9640	-	V. Free Korea	Seoul, S. Korea	1035
9645	HCJB	V. of Andes	Quito, Ecuador	0835
9655	-	R. Habana	Hovana, Cuba	0630
9660	-	Australian BC	Brisbane, Austral.	0720
9665	HEU3	Swiss BC	Berne, Switz.	2015
9667		R. Colombo	Colombo, Ceylon	1240
9675	-	R. Habana	Havana, Cuba	0630
	-	R. Japan	Tokyo, Japan	1020
9680	-	R. Nacional	Lisbon, Porfugal	0305
9685	ZYR227	R. Gazeta	Saa Paulo, Braz.	2340
9690	LRA32	RAE	Buenos Aires, Arg.	0605
9695		Swiss BC	Berne, Switz.	0510
9700	-	R. Sofia	Sofia, Bulgaria	2330
. 9705	-	R. RSA	Johannesburg.	
			S. Afr.	1010
9710	-	RAI	Rome, Italy	2030
9715	-	R. Tirana	Tirana, Albania	2000
9725	-	Kol Yisrael	Tel Aviv. Israel	2115
9730	-	R. Berlin $\ln t^{\prime} \mid$	Berlin, E. Germ.	0230
9735	DMO9	Deutsche Welle	Cologne, W.	
9755	-	R-TV Francaise	Paris, France	0000
9760	-	R, Ghana	Accra, Ghans	2030
		R. Nacional Espana	Madrid, Spain	0305
	-	Viennese R.	Vienno, Austria	2300
9833	-	R. Budapest	Budapest, Hungary	0340
9865	YDFS	RRI	Djakarta,	
			Indonesia	1100
9883	-	R. Peking	Peking, China	0345
9915	VUD	All India R.	Delhi, India	2145
9920	-	R, Peking	Peking China	2225
11672	-	R. Pakistan	Karachi, Pakistan	2015
11705	-	R. Vatican	Vatican City	1930
		R. Sweden	Stockholm. Sweden	0400
11710	-	R. Moscow	Moscow, USSR	0400
11715	PJB	PJB	Bonaire, Neth.	
			Antilles	0410
11720	-	R. Canada	Montreal, Que,	2200
11725	-	R. Brazzaville	Brazzaville, Congo	0515
11730	-	R. Nederland	Hilversum,	
			Netherlands	0645
		R. Moscow	Moscow USSR	0330
11740	CEll74	R. Nuevo Mundo	Santiago, Chile	1110

kHz Call
Name
Location
GMT
25-Meter Band-II750-I1975 kHz

19-Meter Band- $15100-15450 \mathrm{kHz}$

$\begin{aligned} & 15110 \\ & 15110^{\prime} \\ & 15125 \\ & 15135 \end{aligned}$	ZL21	R. New Zealand V. of Andes R. Nacional Trans World R.	Wellington, N.Z. Quito, Ecyador Lisbon, Portugal Bonaire, Neth. Antilles	$\begin{aligned} & 0540 \\ & 0300 \\ & 2335 \\ & 1300 \end{aligned}$
15140		R. Moscow	Moscow, USSR	1115
15155	ZYB9	R. de Sao Paulo	Sao Paulo, Brazil	2100
15160	-	R. TV Francaise	Paris, France	1600
15165	-	V. Denmark	Copenhagen, Denmark	1245
15175	-	R. Norway	Oslo, Norway	2300
15180	-	R. Moscow	Moscow, USSR	0610
15185	-	R. Habana	Havana, Cuba	1000
,	OIX_{4}	R. Finland	Helsinki, Finland	1645
15	-	R. Moscow	Moscow, USSR	1600
15215	-	R. Free Europe	Munich, W. Germ.	2200
15225	-	R. Bucharest	Bucharest, Rumania	0230
15230	-	R. Habana	Havana Cuba	0335
15240	-	R. Sweden	Stockholim, Swede	1905
15285		R. Ghana	Acera, Ghana	1830
15315	ETLF	R. Voice of Gospel	Addis Ababa, Ethiopia	1340
15320		R. Moscow	Moscow USSR	2035
15325	HCJB	V. Andes	Quito, Ecuador	2000
15350		R. Berlin $\left\|n t^{\prime}\right\|$	Berlin, E. Germ.	2250
15380	-	R. Nac. Espana	Tenerife, Canary Is.	2015
15440	WNYW	R. N.Y. Worldwide	New York N.Y.	175
17680	-	R. Peking	Peking, Chin	0125

16-Meter Band-17700-17900 kHz

17720	BED39	V. Free Chind	Taipei, Formosa
17740	0245		
$17765-$	R. Moscow	Moscow. USSR	2030
$17770-$	Deutsche Welle	Kigali, Rwanda	1745
$17775-$	R. Liberty	Munich, W.	0400
	R. Nederland	Gilversum, Neth.	2310

13-Meter Band-21450-21750 kHz

21485	-	R. Vatican	Vatican City	1050
21535	-	Spring brook R.	Johannesburg. 5. Afr.	1400
21545	-	R. Ghana	Accpa, Ghana	1500
21630	-	BBC	London, England	1630
21710	-	BBC	London, England	2100
21735	-	R. Prague	Prague, Czech.	1500
25650	-	BBC	London, England	1610

Peanut-Whistle Hams

Continued from page 50
really know how to use their present shortwave receivers to best advantage? "Perhaps 1 in 500," declares Katz.

Trade Secrets. Skilled operators are indeed few and far between. Unlike the receiving and antenna sub-categories, there is no loyal following nor guidelines which a new flea-power enthusiast can look to for direction. No leader exists who will acknowledge that he is any more than an "average" operator, and few reports have ever been published which reveal the secret techniques those sacred few employ to achieve $12,000-$ mile DX contacts with about $\$ 45$ worth of equipment. Two things are clear, however. Nearly all record-breaking QRP contacts have been scheduled well ahead of time, and most seem to have taken place in the wee hours of the morning. But aside from this, the boys just arn't talking.

Closer examination, however, reveals that the tricks the truly skilled use are nothing more than exemplifications of the Ultimate Receiver and Kraus theories: (1) The more gain and efficiency you havelin your antenna, the less power you need to make contact; (2) the more "trained" your ear is the better your chances of interpreting what an average ham would call an "unreadable signal." Add to this the fact that nearly 85 percent of the hard-core QRPers use code transmissions (CW) for DX work, and you begin to see the light.

The fact that power limitations overseas are far more stringent than in the U.S. may help explain why peanut-whistles tend to be the in Hgs abroad. Particularly in the U.S.S.R., Germany, and Australia, transistorized transmitters are the vogue and QRPers talk not in terms of watts, but milliwatts.

In the U.S. and Canada, enthusiasts generally build transmitters that are simpler in design. Yet they conduct themselves in the same manner on the air. Once a contact has been established-regardiess of the distance involved-power is cranked down to the barest minimum and then measured. This provides for follow-up QSL cards that read: "Transmitter-1/1sth watt input to an RCA 2N247."

Three Thousand Strong. For Novices
(who under the recently-adopted Incentive Licensing Regulations now get a 2 -year license term) probably one of the most gungho organizations to join is the QRP Amateur Radio Club-International. This is a group of some 3000 amateurs scattered throughout the world who are dedicated to low-power operation as their contribution toward relieving the tremendous QRM and congestion now running rampant on all popular ham frequencies. With the built-in 75 -watt restriction on Novices, the QRP Amateur Radio Club is practically tailor-made for these newcomers (though it by no means is restricted to Novice operators alone). Qualifications: You must run under 100 watts input (200 watts p.e.p on sideband) to be eligible. Hitch: If you're ever caught manning a transmitter which exceeds this limitation, you're drummed out permanently.

With supporters the world over, the QRP A.R.C. sponsors contests for its members, presents awards for best performances with the least power, and publishes a quarterly newsletter chock full of interesting accounts of organizational news and individual case histories. Cost for lifetime membership is only $\$ 2.00$, easily within reach of the average low-power enthusiast. Send your fee along with a request for membership to QRP A.R.C. secretary John E. Huetter, K8DZR, 2146 Chesterland Ave., Lakewood, Ohio 44107.

What can you expect if you join the fleapower community? Heterodynes, swishing VFOs, pileups, clobbering, and plenty of QRM-to sáy nothing of a gradually increasing feeling of insecurity and inferiority. If you're willing to weather the disadvantages, however, you may be as lucky as New Zealand's Les Earnshaw, ZL1AAX, who managed a fine QSO with Kentucky running only 20 milliwatts input! Or maybe W6TNS who received his Worked All Continents award back in 1959 using only 80 milliwatts with a homebrew transmitter designed for Novice band operation. Or maybe even the author, who managed 40 states (confirmed through QSLs) simultaneously on both 80 meters (with 3 watts) and 6 mieters (with 5 watts).

But if you become a true dyed-in-the-wool QR Per, look out. Just exceed 100 watts once, and you'll have all of hamdom's low-power addicts to contend with-io say nothing of a formal QRP International drumming-out ceremony!

Hot Line To Weatherman
Continued from page 99

no squelch, it works remarkably well. It makes use of the AM receiver and a crystal controlled convertor to receive VHF, and employs the slope detection method to demodulate the FM signal.

Convertors. There are numerous manufacturers that offer VHF convertors that are used in conjunction with AM receivers. The receiver can be either an auto radio, home BCB radio, shortwave receiver, BCB transistor portable, etc. This type convertor has to be wired into the receiver and instructions outlining how to do it are supplied.

Some types, such as the Metrotek "Listenin" portable convertor, doesn't have to be wired into the receiver. Just place it alongside.

Ameco offers a selection of models which can be used for various receivers. One of the Ameco convertors can be connected to an AM marine radiotelephone and used to receive weather broadcasts by setting the radiotelephone on an unused channel. Of the types available are a selection utilizing tubes or transistors. Some are tunable through several bands.

VHF Marine Radio. If you have VHF/FM marine radiotelephone, it is easy to provide for reception of weather broadcasts. Just install a $162.55-\mathrm{MHz}$ crystal in an unused marine channel setting and that is all it takes. If you have a VHF/FM marine band walkie-talkie, you can do the same thing, that is, if you have an unused channel available.

Used Equipment. A two-way VHF/FM mobile radio will operate beautifully as a weather broadcast receiver. These units can be picked up from two-way radio equipment dealers who take them in on trade when new units are sold.

Much of this equipment is obsolete wide band FM that cannot be used commercially, so can be gotten cheaply. Realize that you won't use the transmitter portion, so install a crystal in the receiver section for 162.55 MHz and you have an excellent weather receiver. Removing the tubes from the transmitter section will cut down considerably on power drain. You should be able to get one for about $\$ 75$.

There are also lots of obsolete wideband VHF/FM walkie-talkies around that can be
equipped with a crystal for 162.55 MHz and then used as a portable weather receiver.

Construction. You might try your hand at constructing a receiver to get the weather broadcasis. A very sensitive and easily made receiver is the superregenerative type. These receivers work well at 162.55 MHz and are quite sensitive. They present few construction problems and a number of articles have been published on building them.

Reception. As is well known, the distance that you can receive VHF frequencies well depends to a great degree on the height of your antenna as well as the height of the antenna at the transmitter. Hills and valleys between the two antennas can cause dead spots, or poor reception. It is recommended that a good antenna, mounted high and in the clear, be installed. This will result in more consistently good reception.

A proper VHF antenna is needed for fixed, tunable and combination receivers as well as two-way mobile radios for best results when used as weather receivers. When close to the Weather Bureau station, an 18 -in.-length of copper wire can be used as an antenna. It is positioned vertically and then connected to the receiver "ANT" terminal. In a car, an 18 -in. whip can be installed in the center of the roof. As mentioned before, better results can be obtained when an external antenna is used, mounted as high (in the clear) as possible. The use of coaxial cable between the antenna and receiver is recommended.

Shipboard. On boats, where space is at a premium, the antenna can be one of several varieties. All of them are verticals or variations thereof and should be mounted as high as practical. Coaxial cable is required between the antenna and receiver.

Noise in the VHF band is usually much lower than in the AM broadcast and MF marine band. Also, a true FM receiver discriminates against noise impulses.

An FM receiver will give the clearest and most noise free reception. When a VHF convertor is used with an AM receiver, speech will not sound as clear because the detector is not as efficient as an FM demodulator, which uses a discriminator, ratio detector or gated beam circuit.

Whether you use a true FM receiver, or an AM receiver/VHF convertor combination, there are benefits derived from hearing up-to-date weather broadcasts from United States Weather Bureau stations, a government service for the public.

Mini-Jector
Continued from page 92

down when using Mini-jector, or a miniature toggle switch. Solder the connecting leads to the switch before installation. The wires should be long enough to allow the board to be removed for battery replacement.

After the switch is installed, position the board so it is just ready to enter the probe handle, then cut the leads from S1 to the exact length and solder. Since the leads must fold under the perf-board when the assembly is inserted in the tube, S 1 's con-

Completed Mini-jector is ready to go to work tracking down the culprit in just about any piece of electronic gear, from hi-fi tuners to public address systems.
necting leads should be \#24 stranded hookup wire or thinner.
The common test lead (ground) will be
connected to the common push-in terminal. On the front of the probe body, directly opposite the common push-in terminal, cut a slot with cutters; then solder about 6 in. of insulated stranded wire to the common terminal. Solder' about 2 in . of \#20 or \#22 solid wire to the staked terminal (the output), slide the wire into the test prod tip, and mount the front of the test probe. Two screws hold the front assembly in place. Now Mini-jector is ready for use.

Using Mini-jector. As a general rule, the injector's ground lead must be connected to the equipment under test, even for RF signal injection. The injector's output has been deliberately limited to about 0.1 volt, so you need not be afraid to apply the injector's output to a transistor base-you won't damage the transistor.

Should you check Mini-jector's output with a scope, you will note that the signal at Q1's collector is essentially a square wave, while the output at Q2's collector is not square-it is more like a sawtooth. This is normal. The component values for Q2 have been selected for a sawtooth output, which has a higher harmonic content than a square wave.

The total battery current drain is approximately 0.25 to 0.5 mA , and the battery, under normal usage should rival shelf life. If you don't use the unit for a considerable length of time, remove the battery-to avoid damage in case the battery corrodes and leaks on the circuitry.

| Lucky | 13 for Bored DXers |
| :--- | :--- | :--- |
| Continued from page 74 | |$|$

Frequency (kHz)	Call	Operator \& Location
12825 x	FFP7	Government Fort-de-France, Martinique
12808	KPH	Radiomarine Corp. Bolinas, Callf.
12781.5	OST	Government Brussells, Belgium
$12770 \times$	NDT	U.S. Navy Tokosuka, Japan
12768	PCH5	Government Scheveningen, Netherlands
$12765 \times$	HJQ	Government Cartagena, Colombia
12763.5	DAM	Funkamt Hamburg Norddeich, W. Germany
12760 x	0×2	Government Lyngby, Denmark
12750	PJK	Dutch Navy Suffisant, Curacao
12534		Ships at Sea *
12558		Ships at Sea *

Shortwave For Non-SWLS

Contimued from page 58
teur news media will pick up the information and pass it around.

Overseas Hams. Some foreign amateurs tend to stay on one or two frequencies and have approximate hours and/or days of operation. Such information can be gleaned from examination of the NRRC's amateur section. Again, notes can be arranged by time.

One DXer prepares a 3×5 card on each amateur representing a new country, listing information mentioned above, then tacks the cards to a bulletin board. Thus, he can quickly refer to any item at a glance.

Another method of picking up informa-

Some special types of receivers can be used for $5 W$ Ling. For example, above is a deluxe table model set featuring several SW bands; below is partable transistor all-band job.
tion is just by listening. American amateurs tend to concentrate in the low end of the phone band when calling foreign Hams and you can quickly spot band openings by listening for DX hounds calling "CQ DX."

Regardless of what set of frequencies you like to tune, your organization and preparation is the key to logging good DX. After you are familiar with the bands and can almost identify a station by its modulation characteristics and transmitting frequency, random tuning can yield good results.

By knowing the characteristics of the band or bands, and knowing the stations that are normally present, a stranger will stand out.

One of the keys to being a good SW DXer is keeping your equipment in good shape. Install the best antenna you can-a wire as high and as long as your space limitations permit. And arranging your listening post for convenience will make those dial-twiddling hours more fun and productive.

When making logs, put your notes in one book and, when full, file it away.

Happy SWLing. Shortwave listening can be an interesting hobby. You can be Johnny-on-the-spot rather than waiting for the six o'clock evening news on television. And, you can get first-hand experience at comparing political points of view.

The basics of joyful SWLing is to acquire some of the above-mentioned reference materials and at least one club bulletin, and then plan your listening. See how other listeners do it, use the best of their ideas, and compare notes. Ask questions and do some reading. You'll be surprised at the results of a little diligence and perseverance when you go back te those dials, and put your "ear to the world," as it were.

Mood Monitoring
Continued from page 78

fied and average responses were computed with a Mneumotron Computer. The computer is triggered by the output of the same waveform generator producing the clicks. Therefore, the brain potentials in response to the clicks are treated as signals by the computer. Other brain potentials, not in response to the computer stimuli, are treated as noise and effectively cancelled out.

Output is recorded on an X-Y plotter and on punched paper tape. The tape is then fed
into a Honeywell H-800 computer for analysis.

This revolutionary three-year experiment proved to the Honeywell scientists that they could definitely monitor brain waves in response to defined stimuli. These patterns correlated very closely with conventional patterns of sleep and awateness, and were confirmed by the TV monitoring of the subject's behavior. As Honeywell scientist Donald I. Tepas summed up: "We can now effectively monitor human behavior."

He concludes that we will one day be able to tell whether or not a soldier on the battlefield is weary, a pilot in the air alert, an astronaut far out in space awake or asleep.

CB Moonshine
Continued from page 60

latch onto that legendary QSL. So, coming East and passing this close anyway, figured I might as well give it a good personal try.

Climbed slowly to the top of a ridge, and there just below and beyond was Seven Creek-three unpainted houses, general store, church and a one room school-just like I pictured it. I parked in front of the general store which doubled as a post office. A bunch of kids gathered round to stare at my '68 Buick. I took my keys out of the ignition, moved out the car and into post office past a blonde Daisy-May type in the doorway who was also admiring the Buick.

I walked kind of tall up to the old fellow behind the cash register. "Where can I find the Mountaineer?"

He looked me over a few seconds then gave out with a long hillbilly type laughs "We're all mountaineers, boy."
"I mean the fellow that gets his mail under that name. The one that talks on the radio."
"Never heard of him."
There were a couple others seated in the far corner. They shook their heads in unison then all three decided to ignore me. But as I left, the gal in the doorway followed me to my car. "What do you want with the Moúntaineer?"

Lying smoothly. "I'm interested in his CB compressor."

She got in the car without being asked. "You can get one of those by mail." She ran her hand along the upholstery.
"I'm in the wholesale business." Decided to meet con with con. "Thought maybe we could work out a deal." Once I got that QSL, yours truly would be long gone.
"You're one of them engineer fellows."
I nodded. It was the truth.
"Papa's been working on some refinements for his compressor." She considered it. "Maybe you could help him."
"He's your father?"
"That's right." She produced a packet of CB mail all addressed to the Mountaineer. "You start this thing and I'll direct you."
"Okay." We headed West, out of town and over another ridge. "What's your name?"
"Mary June, an' when you get to the next fork turn left." She began opening mail. Those letters containing money Mary June
put in her shirt pocket. Everything else she pitched out the window.

At that fork, the road turned to clay.
"Take it easy now, or you'll skid right off the road." Mary June scanned an FCC complaint. It went out the window, too!

I laughed. "What happens then?"
"We'll have to walk the next four miles."
"Nice day for a walk." Like I said, once I got the QSL Seven Creek and I would permanently part.
"Wouldn't bother me none. I do it every day. But don't figure you're in shape."

Decided I wasn't so we crawled along at 10 miles per hour.

Mary June put my rig on the air. "Mountaineer, this is daughter. I'll be there directly. I'm bringing somebody with me you'll want to meet."

He came back. "I'll be waiting, girl."
Mary June shut the CB off entirely and a funny feeling began around the back of my neck. Five minutes later the road came to a dead end in front of their cabin.
"Come on, papa'll be waiting inside." She moved on out of the car and up the path.

I took a long deep breath, followed. Just as soon as I was well clear of the car, Mountaineer stepped from behind a big pine tree with shotgun pointed squarely at my middle. He stood silent for a few seconds, looked me over. "Who is he, gid?"
"He's an engineer and he says he wants to help you sell your compressor." Mary June brought forth the batch of orders from her pocket.
"Don't need no selling help."
"But being an engineer he can help you with that technical problem." A gleam in her eye. "You know, the meter."

The old man grinned. "And besides, being kind of a pretty man, you'd like to keep him a while."

Mary June blushed. "Well, he is a man."
Mountaineer motioned toward the cabin and we all started walking that way. "Yeah, boy, maybe you can help me. You've seen how the S-meter on your rig tends to jump when I use the compressor?"

I nodded and Mary June opened the door for us.
"Well, that don't look so good?" He put himself down in a rocking chair. "And to keep Mary June happy, I figure you can just be my guest unti] you figure out a way to keep it from jumping."

So it seems I'll latch onto that rare QSL for sure, but how do I get home with it?

Dynamic Duo

Continued from page 77
operation range can be determined from the curves by using the following formula:

$$
\begin{gathered}
\text { Beta }=\frac{\boldsymbol{I}_{c}}{I_{b}} \text { or Beta }=\frac{\Delta I_{c}}{\Delta I_{b}} \\
\Delta I_{c}=I_{c z}-I_{c 1} \text { and } \Delta I_{b}=I_{b z}-I_{b 1}
\end{gathered}
$$

Following this formula and using the values given on the curves, we can determine beta and see if the transistor is operating within its linear range.

```
Beta for curve 1:
                    ImA
                \(-=50\)
                .02 mA
```


Typical curves that finished Dynamic Duo will display on your scope lef you check vital fransistor statistics.

Beta for curve 2:
$2 m A$
$\underline{-}=50$
$.04 m A$
If the two values of beta are equal or very close in value, the transistor in both curves is operating within its linear region. As a check, figure the beta using the delta currents.

$$
\begin{aligned}
& \Delta I_{c}=2 m A-1 m A \text { or } 1 \mathrm{~mA} \\
& \Delta I_{b}=40 \mathrm{uA}-20 \mathrm{u} \text { or } 20 \mathrm{uA} \\
& \text { Beta }=\frac{1 \mathrm{~mA}}{.02 \mathrm{~mA}} \text { or } 50
\end{aligned}
$$

To match transistors for any applications, pick a desired transistor and connect it to the tracer. Adjust the curve tracer for the desired curves and grease-pencil the two curves on the scope's screen. Now, without disturbing the tracer or scope controls, connect similar transistors to the tracer until you find one that has approximately the same curves.

Tapeless TV Recorder

Continued from page 68
ing could then be made insensitive to the action of light. This may be what CBS says is a "sort of development process."

The basic characteristics of the photochromic dyes would fit the needs of EVR admirably, since they can provide images of extremely high resolution. (In actual fact, a square inch of film treated with such a dye can record the contents of a large book!) This is in keeping with CBS's claims that the EVR film can store much more information than can magnetic tape, and that the EVR system could be coupled with such devices as the firm's Linotron electronic typesetter.

The idea that a photochromic process such as this, or something akin to it, underlies the EVR process gains credence when it is noted that one collaborating company is a major manufacturer of dyes. Ciba Lid. (a Swiss manufacturer of dyes) and Imperial Chemical Industries (England) jointly own Ilford Ltd., a well-known manufacturer of photographic materials. All three are involved with CBS in the EVR project.

It is only a guess on our part that CBS might be using a photochromic process, and CBS isn't ready to either confirm or deny the idea at this time. But until CBS actually reveals the techniques used, this guess is as good as any other.

EVR Vs. VTR. Manufacturers of EVR equipment, and those making magnetic video tape recording (VTR) systems, will undoubtedly battle hard for future educational and home consumer markets. For video equipment customers this spells better equipment at lower prices.

As things stand now, EVR may have a significant price advantage over VTR. EVR playback units are tentatively pegged at $\$ 280$, but even this relatively low price may drop as demand for the equipment increases. In comparison, most VTR equipment now costs upward of $\$ 1000$, but prices are going down steadily and may drop more because of technologic advances and the pressure of imminent rough competition from EVR.

In fact, one California company (Newell Associates) reports that it has devised a new magnetic video tape deck that can bring color video into homes at prices approximating the cost of an ordinary TV set. The company has also developed a very compact
tape reel (less than 2 in . in diameter) that can pack about 45 minutes of program material into channels on standard $1 / 4 \mathrm{in}$. tape. A full-length color movie can reportedly by put on this magnetic tape for only $\$ 20$.

The anticipated cost of EVR film is from $\$ 7$ to $\$ 14$ per 20 minutes of black-and-white material. This figures out to $\$ 21$ to $\$ 42$ per hour. The cost of color hasn't been estimated as yet, but it would undoubtedly be substantially more inasmuch as double the amount of film is needed. The magnetic tape and EVR film costs already appear to be competitive.

Premium For Flexibility? Price is not the only factor involved when a customer attempts to choose between a magnetic video systepm and the EVR system. Flexibility of operation can be a deciding factor for many. And in this respect EVR has to take a back seat.

EVR can only be used to play films that have been factory-programmed; it cannot be used to record video programs directly off the air. On the other hand, VTR can play purchased tapes, record programs from TV broadcasts, or tape live action by the use of video cameras. Moreover, magnetic tapes can be erased and used to record new program material; this is not possible with EVR film.

You can bet a silver dollar against a burned-out resistor that video experts in many companies are working feverishly to develop other systems they aren't breathing a word about. There is no telling what may be up their electronic sleeves. Whatever it is, it will be shaken out as quickly as possible to prevent EVR from getting too much of a head start in what promises to be a revolution in TV use.

No one system is ever likely to monopolize the video recording business. There will undoubtedly be a demand for both EVR-type systems as well as for magnetic tape systems. The situation is analogous to the present healthy demand for both magnetic tape recorders and LP records. Not everyone cares about recording his own material; to these people playback alone is sufficient, and they will go on buying ready-made LP records and pre-recorded tapes. Similarly, some will want flexible equipment that can do all things in the video field; others will be quite happy with only playback equipment such as EVR, especially if the cost is lower.

Intrepid Inventor. The EVR system created by CBS came into being under the
guidance of Dr. Peter C. Goldmark, President and Director of Research of the CBS Laboratories in Stamford, Connecticut.

Twenty years ago Goldmark turned a groovy technological trick by inventing the $331 / 3-\mathrm{rpm}$ record which was to revolutionize the recording industry. But the flip side of Goldmark's success story came out more than a little scratchy. The color-TV system he also invented lost out to the now standard system developed by RCA, the arch rival of CBS.

Has Goldmark avenged his loss by beating out RCA and others in the educational and perhaps home video recording field? It's much too early to tally the final score. But if RCA or anyone else has anything to show, they will show it at first opportunity. Dr. Goldmark has already amply demonstrated that he is not given to twiddling his thumbs after one or two successes-or failures. If EVR can be improved in any way, he is surely trying to find out how.

But that's a battle the technological giants will have to wage on their own. The rest of us can only sit at ringside and make our bets about the final outcome. One way or the other, we can't lose. It is bound to be a good show in more ways than one.

The only real problem for us is this: when friend husband stops his new EVR film to contemplate the virtues of a contemporary Gina Lollobrigida for twenty minutes, does his wife have the right to demand equal ogle time with male cinematic idols?

Beer and pretzels, anyone?

Ham Traffic
Continued from page 90

9. What is chirp and how can it be remedied in a CW transmitter?
Don't let number 7 scare you. It sounds like they want a description of the manufacturing process for making transistors, which could take an engineer all day to explain. Actually, they merely want you to understand that transistors are made of layers of n - and p-types of semiconductor material. Then they want to know which layer is the emitter, which is the base, and which is the collector. You're supposed to be able to identify each on a schematic diagram of a transistor and know the difference between a pnp and npn transistor. Then they want you to know the key characteristics such as alpha, beta, and cutoff frequency. That's all.
. . . And Not So News. Due to a slip of the typewriter, the table of new FCC amateur frequency assignments on page 108 of the January 1968 Radio-TV Experimenter carried an error that may have inadvertently discouraged some Novice operators.

A footnote to the table said Novices would not be allowed on two meters after November 22, 1968. This is not correct, since the word "phone" was accidentally left out of the copy. The new rules prohibit Novice phone operation on two meters after the date given, but still allow Novice CW operation on two meters. Present Novice operation on 80,40 , and 15 meters is unaffected by the new rules.

Sorry if my sloppy typewriter scared any of you fellows intending to work CW on two meters. There's very little brass-pounding up there in most areas, but it's a good place to gain valuable experience if you can find someone to talk to you.

Another item that will encourage prospective Novices is that they will get the first benefits of the new incentive rules. While the rest of the rules don't go into effect until November, the part about two-year license terms for Novices is now in effect! I don't know how Frank Charlie Charlie decided to be so generous, but his big computer is now spitting out these two-year Novice tickets.

So, if you really want to be a ham, this is your golden opportunity. The added year will give all you fellows more time to practice the code on the air as you prepare for
that General test. This should be ample time for anyone with a real desire for a higher ticket to get it.

Oscar Again. Project Oscar, forgotten by many hams since its spectacular appearance in the headlines a few years ago when the first ham radio satellite was orbited, is still in business and growing.

It's now a permanent organization, based at Foothill College, Los Altos, Calif., coordinating world-wide amateur interests in satellite projects. The staff is an outgrowth of the Oscar I crew.

Though many of us don't have the equipment or the know-how to actively participate in future Oscar experiments, we'd still like to keep up to date on what the space bunch is doing. A good way to do this-and just about the only way for the casual ham-is to monitor Oscar bulletins, which are transmitted on 40 - and 20 -meter CW frequencies whenever there's Oscar news to report.

To get the latest from Oscar, look for W6ASH on 14.030 MHz at 0200 GMT and on 7.015 MHz at 5055 GMT on Fridays. Remember your GMT conversion, fellows. Those transmissions both occur on Thursday evenings, local USA time.

CLASSIFIED Itarket Place

 FOR BIGGER PROFITS! NEW CAREER OPPORTUNITIES!

 FOR BIGGER PROFITS! NEW CAREER OPPORTUNITIES! READ AND REPLY TO THESE CLASSIFIED ADS

 READ AND REPLY TO THESE CLASSIFIED ADS}

Classified Ads 65 ¢ per word, each insertion, minimum 10 words, payable in edvance. To be included in the next available issue of RADIO-TV EXPERIMENTER, copy must be in our New York Office by Feb. 10th. Address orders to C. D. Wilson, Manager, Classified Advertising, RÁDIO-TV EXPERIMENTER, 505 Park Ave., New York, N. Y. 10022.

ADDITIONAL INCOME

TURN your Mallbox into a goldmine. Catalog 254 . La Dera, 1104 San Antonio Drive, Long Beach, Calif. 90807.

MaKe Your Classifed Ad Pay. Get "How. To Write a Classified Ad That Pulls." Includes certificate worth $\$ 2.00$ towards classified ad in 58 M . Send $\$ 1.00$ $t 0$ C. D. Whlson, Sclence \& Mechanics, 505 Park Ave., New York, N. Y. 10022.

AUTO PARTS \& ACCESSORIES

MAKE Hot Coffee, Cocoa, Soup, Tea in your own car, Complete detalls. S, A. Wimberly Co., 119 Willow Street. Dept. D-11, Redwood City, Celif. 94063

AUTO TRAILERS \& SUPPLIES

MOR/RYDE Rubber Suspension. No Maintenance. Deluxe Ride. Mor/Ryde, Box 579. Elkhart, Indiana 46514.

BOOKS \& PERIODICALS

FREE Illustrated Catalog! Unusual Adult Books! Sondreal, 225 Granby St., Adult Books! Sondr
Norfolk, Va. 23510 .

BUSINESS OPPORTUNITIES

I MADE $\$ 40,000.00$ a year by Mallorder! Helped others make money! Start with Helped others make money, Start with Ypillanti, Michigan 48197.

FREE BOOK "990 Succcessful LittleKnown Businesses." Fascinating! Work homet Plymouth 211-R, Brooklyn, N. Y. 11218.

EARTHWORMS

BIG Money Raising Fishworms and Crickets. Free Literature. Carter Farm-O. Plains. Georgia 31780.

EDUCATION INSTRUCTION

FCC License and Assoclate Degree correspondence/restdence courses. School bulletin free. Grantham Institute of Electronics. 1505 N . Western Ave.. Hollywood. Callforna 90027 .

EARN Your Degree In Electronics Engineering. Hishly Effective Home Study Courses In Electrontcs Engineering Technolosy And Electronics Engineering Mathematics. Free Literature. Cook's Institute Of Electronics Engineering. P. O. Box Of Electronics Ensineering. P. O. Box 36185.

EMPLOYMENT INFORMATION

"HOW To Get A Better Job." Effective. easy to follow instructions. Full refund it not satisfied. $\$ 2.00$. Career Aids, Box if not satisfied. \$2,00, Ca.

GIFTS THAT PLEASE

FREE, Beautiful Gift Catalog, Henry"s Gifts, 1500 Jollet, Plainvlew, Texas 79072.
FREE GIfts with Order! Send for color. catalog nowl Jerome Assoclates, Gothic, SM-1, Novato, Callf. 94947.

HOBBIES \& COLLECTIONS

NEWI Groovey Psychedelle Color, Post-er-of-the-month-dub, $\$ 3.00$ Membership gets, two posters Free! Thde Lines. 1632 Milton Road. Naps, Callf. 94558.

HYPNOTISM

SELF-Hypnosis-let's you use amazing, proven power for learaing, working, feelproven power for learning, working, feelMcKinley, Box 3038, San Bernardino, MaKinley,
Callf. 92404.

INVENTIONS WANTED

WE either self your invention or pay cash bonus. Write for detalls. Universal Inventions, 298-5, Marion, Ohio 43302.

MISCELLANEOUS

WINEMAKERS Catalog - Samples -Recipes-25c. Kraus. Box 451-U, Nevada, M1ssourl 64772.

THERE is no charge for the Zip Code. Please use it in your Classiffed Ad

MONEYMAKING OPPORTUNITIES

YOU are tmportant! Amaze Iamily, friends, five ways to develop profitable letsure time, \$4.95. Tide Lines, 1632 Milton Road, Nspa, Calif, 94558.

PERSONAL

BLLL Problems? Poor credit no trouble. Not a loan company. Send for free application. Automatic Acceptance, 318DC
Broadway Blvd. Reno. Nev. 89502 or Broadway Blvd.. Reno, Nev. 89502 or
307 DC Focasset Ave.. Providence. R, I. 307DC Pocasset Ave.. Providence, R. 1. 02909.

IT'S easy to stop smoking with our Swedish Formula. Thousands already have. Send $\$ 1.25$ today! Antaramian, Box 2389. San Dlego. Callf. 92112 .

PETS-DOGS, BIRDS, RABBITS, ETC.
REGISTERED Bloodhound Pups Black and Tan or Tawney Red. Write for detalls. Fred Crandall, Kingman, Kansas 67068.

PROFITABLE OCCUPATIONS
$\$ 25.00$ AN EOur Possible Learn Furniture Touch-up. Illustrated Gulde $\$ 4.98$. Pegg Enterprises, Box 243. So. Holland, III. 60473 .

RADIO \& TELEVISION

CaNADIANS-Giant Electronic Catalogs, Eff-Fi. Shortwave, Ham, CB. Rush logs, E1-FL. Shortwave, Ham, CB, Rush st.00. ET
Canada.

RECORDERS, SOUND EQUIPMENT

\& SUPPLIES
CHALLENGE Your Sound System with the most demanding music ever put on record and tape: Write: Concert Recording, Lynwood, Callf. 90262.

SEEDS, PLANTS \& NURSERY STOCK

1.000 NURSERY Items: Many unusual Items-Grafts. Seedlings. Trees, Shrubs, Evergreens, Hedging, Vines, Tree and Evergreen Seeds. Propagation Supplies, Pots. Waterlng Devices. Free Catalog. Melinger's, 2322 West South Range Rd. North Lima, Ohio 44452.

SONGWRITERS

POEMS Wanted for musical setting and recording. Send poems. Free examination. Crown Music, 49-SC, West 32, New York 10001.

STAMP COLLECTING

FREE 50 Stamps including Cayman Islands, Southern Rhodesia, San Marino. Approvals. Moumblow. 2000-4C Maple. Costa Mesa. Callf. 92627.

START YOUR OWN BUSINESS

UP To 90\& Proft On Each $\$ 1.00$ Sale. Detalls 25f. Carpenter, 2907-C West 39th Detalls 255. Carpenter, 290
Place. Chicago. 11.60632.

TREASURE FINDERS-PROSPECTING EQUIPMENT

TREASURE Kunters! Prospectors! Relco's new instruments detect buried gold. silver, coins. Rits. assembled models. Transistorized. Welghs 3 pounds. $\$ 19.95$ pp. Free catalog. Relco-A30, Box 10839. Houston. Texas 77018.

For Greater Classified Profits

 why not try the new combination classified ad mediumYour classified ad will appear in SCIENCE \& MECHANICS MAGAZINE as well as in a minimum of four other SCIENCE \& MECHANICS PUBLICATIONS. Write now for information to C. D. Wilson, Manager, Classified Advertising, SCIENCE \& MECHANICS, 505 Park Ave., New York, N. Y. 10022.

You can earn more money if you get an FCC License

and here's our famous CIE warranty that you will get your license if you study with us at home

Nor satisfied with your present income? The most practical thing you can do about it is "bone up" on your electronics, pass the FCC exam, and get your Government license.

The demand for licensed men is enormous. Ten years ago there were about 100,000 licensed communications stations, including those for police and fire departments, airlines, the merchant marine, pipelines, telephone companies, taxicabs, railroads, trucking firms, delivery services, and so on.

Today there are over a million such stations on the air, and the number is growing constantly. And according to Federal law, no one is permitted to operate or service such equipment without a Commercial FCC License or without being under the direct supervision of a licensed operator.

This has resulted in a gold mine of new business for licensed service technicians. A typical mobile radio service contract pays an average of about $\$ 100$ a month. It's possible for one trained technician to maintain eight to ten such mobile systems. Some men cover as many as fifteen systems, each with perhaps a dozen units.

Coming Impact of UHF

This demand for licensed operators and service technicians will be boosted again in the next 5 years by the mushrooming of UHF television. To the 500 or so VHF television stations now in operation, several times that many UHF stations may be added by the licensing of UHF channels and the sale of 10 million all-channel sets per year.

Opportunities In Plants

And there are other exciting opportunities in aerospace industries, electronics manufacturers, telephone companies, and plants operated by electronic automation. Inside indusirial plants like these, it's the licensed technician who is always considered first for promotion and in-plant training programs. The reason is simple. Passing the Federal government's FCC exam and get-
ting your license is widely accepted proof that you know the fundamentals of electronics.
So why docsn't everybody who "tinkers" with electronic components get an FCC License and start cleaning up?

The answer: it's not that simple. The government's licensing exam is tough. In fact, an average of two out of every three men who take the FCC exam fail.

There is one way, however, of being pretty certain that you will pass the FCC exam. And that is to take one of the FCC home study courses offered by the Cleveland Institute of Electronics.

CIE courses are so effective that better than 9 out of every 10 CIE-trained men who take the exam pass it... on their very first try! That's why we can afford to back our courses with the iron-clad Warranty shown on the facing page: you get your FCC License or your money back.
There's a reason for this remarkable record. From the beginning, CIE has specialized in electronics courses designed for home study. We have developed techniques that make learning at home easy, even if you've had trouble studying before.

In a Class by Yourself

Your CIE instructor gives his undivided personal attention to the lessons and questions you send in. It's like being the only student in his "class." He not only grades your work, he analyzes it. And he mails back his correc. tions and comments the same day he receives your assignment, so you can read his notations while everything is still fresh in your mind.

Man Card for Two Free Books

Want to know more? The postpaid reply card bound-in here will bring you free copies of our school catalog describing opportunities in electronics, our teaching methods, and our courses, together with our special booklet, "How to Get a Commercial FCC License." If card has been removed, just send your name and address to us.

Matt Stuczynsht, Senior Transmitter Operator, Radio Station WBOE
"I give Cleveland Institute credit for my Firstclass Commercial FCC
 License. Even though I had only six weeks of high school algebra, CIE's AUTO-PROGRAMMEDTM lessons make elec ironics theory and fundamentals easy. I now have a good job in studio operation, transmitting, proof of performance, equipment servicing. Believe me, CIE lives up to its promises."

Chuck Hawkins, Chief Radio Technican, Division 12, Ohio Dept. of Highways
"My CIE Course enabled me to pass both the 2nd and Ist Class License Exams on my first attempt...I had no prior electronics training either. I'm now in charge of Division Communications. We service 119 mobile units and six base stations. It's an interesting, challenging and rewarding job. And incidentally, I got it through CIE's Job Placement Service.'
 Institute. Thelr FCC License Course really teaches you theory and fundamentals and is particularly strong on transistors, moblle radio, troubleshooting and math. Do I use this knowledge? You bet. We're installing more sophisticated electronic gear all the time and what I learned from CIE sure helps."

ENROLL UNDER G.I. BILL.

All CIE courses are avallable under the new G.I. Bill. If you served on acthe duty since January 31, 1955, or are in service now, check box on reply card for G.I. Bili information.

CIE Cleveland Institute of Electronics

 1776 E. 17th St., Dept. EX-24, Cleveland, Ohio 44114Accredited by the Accrediting Commission of the National Home Study Council, and the only home study school to provide complefeccoverase of electronics fundamentals plus such up-fo-date applications as: Microminiaturization. Iaser Theory and Application - Suppressed Cartier Modulation • Single Sideband Techniques - Logical Troubleshooting • Boolean Algebra • Pulse Theory - Tbmebave Generators...and many more.

Cleveland Institute of E!ectronics

WAIRIRANTITY

of success in obtaining a Government FCC License

The Cleveland Institute of Electronics hereby warrants that upon completion of the Electronics Technology, Broadcast Engineering, or First-Class FCC License course, you will be able to pass the FCC examination for a First Class Commercial Radio Telephone License (with Radar Endorsement) ; OR upon completion of the Electronic Communications course you will be able to pass the FCC examination for a Second Class Commercial Radio Telephone License;

AND in the event that you are unable to pass the FCC test for the course you select, on the very first try, you will receive a FULL REFUND of all tuition payments.

This warranty is valid for the entire period of the completion time allowed for the course selected.

BUILD 20 RADIO CIRCUITS AT HOME

 with the New Improved $\$ \uparrow \mathbf{~ M 5}$OGRESIVE RADIO "EDU-KIT"(B) A Practical Home Radio Course $\quad \leq \square$

Now Includes

* 12 RECEIVERS
* 3 TRANSMITTERS
* SQ. WAVE GENERATOR * SIGNAL TRACER AMPLIFIER
- SIGNAL INJECTOR CODE OSCILLATOR
* No Knowledge of Radio Necessary
\star No Additional Parts or Tools Needed
\star EXCELLENT BACKGROUND FOR TV
\star SCHOOL INQUIRIES INVITED
- Sold In 79 Countries

YOU DON'T HAVE TO SPEND

HUNDREDS OF DOLLARS FOR A RADIO COURSE

The "Edu-kit", ofters you an outstanding PRACTICAL HOME RADIO COURSE AB A

 in a protessionral mowner, how radios, using rekular schematics; how to whre and solder RF You will learn the basic moliclotes of radiv. You wlal construct, circuit chassis. RF, and AF amplifiers and oschilators. detectors, rectifiers, cost equipment, You worh whith and practice cocte, using the prozressive code oaclllator. You whil tearn and wractice \&ressive Dynamic Radio $\&$ Electronica Tester, Square wave Gencrator Signat injector, Pro:
 osclilator signal Tracer and sional injector, circults, and learn how to operate them. You wily receive an excellint background for television, Hi-Fi and Eiectronics. the product of many years of teaching and enginecring experience. The The "Edu-kit" will provide you with a batic education in Electronics and Radoriencerin The "Edu-kit" will

THE KIT FOR EVERYONE

You do not need the slbthtest background In radio or sclence. Whether you are interwant an interesting hobby, a well paying the "Esdu kit.
akes and backgrounds have successtulty tries of the world. The , Edu-kit" has been carefully desisned, step by step, so that allows you to teach yourself at "Edu. Mot" rate. No instructor is nocessary.

PROGRESSIVE TEACHING METHOD

The Progrosstive Radio "Edu-kit" is the toremost educational radio kit in the world,
and ts universally accepted as the standard in the fietd of electronics training. The "Edu: and is universally accepted as the standard in the tietd of electronics traimink. The wordd: learn schematics. study theory, practice trouble shootink aink in a closely lyou construct, Lram designed to provide wh easily learned, thorough and interesting backkround in radto.
 and trouble-shoothe. Then you buind a moade advanced radio. learn more advanced theory and technlques. Gradually, in a proakressive manced mado, learn more advanced theory Drolessional Radto Tecturiclan" course are Recelver. Trañsmitter, Code Oscillator, Slonal Tracer, Square Whe "Edukit" couran are Recelver. Trañmitter, Code Osithator, Slonal "breadboard" experiments, but genuline radio circults, constructed by means of profeasional wirlng and solderlng on metal ehassis. plua the new method of radio construction known

THE "EDU-KIT" IS COMPLETE

lectronice receive all parta and instructiona necessary to build twenty different radio and able, electrolytic. mica, ceramiced to operate. Our kits contain tubes, tube sockets, varihardware, tubing. punched metal chassis, Instruction Manualor, hookeup wire, solder, In addition, you receive printed circuit materials, fincluding printed circuit chassia professional clectric soldering iron, and a self-powered receive a useful set of toals. Tester. The "Edu-Kit" also includes Code Inatructions and Dynamle Radio and Electronica servicing with the Progresslve signil Ticacee training, You will also recelve lessons for Fldelity Gulde and Qula Book, You receive membership on Radio. Tig Club, Injoctor, a Migh thon service, Certificate of Merit and Discount Privileges. You recelve all parts. toels.

Progressive "Edu.Klts" Inc. 1186 Brondway, Dept. 5230 , Hewlett. N. Y. 11557

- - UNCONDITIONAL MONEY-BACK GUARANTEE- - - -

Please rush my Progressive Radio "Edu-Kit" to me, as indicated below:
Check one box to indicate choice of model
Regular model $\$ 26.95$.
\square Deluxe model $\$ 31.95$ (same as regular model, except with superior parts and tools plus Radio \& TV Parts Jackpot worth \$15.)
Check one box to indicate manner of payment
\square I enclose full payment. Ship "Edu-Kit" post paid.
Ship "Edu-Kit" C.O.D. I will pay postage.
Send me FREE additional information describing "Edu•Kit."
Name
Address

PROGRESSIVE "EDU-KITS" INC.
1186 Broadway, Dept. 523DJ, Hewlett, N. Y. 11557

Troining Electronies Technicions since 1946

FREE EXTRAS

- SET OF TOOLS

- soldering iron
- Electronics tester

PLIERS-CUTTERS
VALUABLE DISCOUNT CARD
CERTIFICATE OF MERIT TESTERINSTRUCTION MANUAL TELEVISION BOOK. RADIO TROUELE-SHOOTING ROOK MEMEERSHIP IN RADIO.TV CLUE: CONSULTATION SERVICE FCC AMATEUR LICENSE TRAINING

SCRVICING LESSONS

Vou will learn trouble-shooting and Servicing in a progresslve manner. You you construct, You witil learn symptoms and causes of trouble in nome, portable use the professional shknal Tracer. the unlque stynat infeetor and the dynamic are learning in this practical way you will be atile to do many a repair fob you your frlends and nelghbors, and enarke tees. which wil! far exceed the prlce of whil help you with any technical prob.

FROM OUR MAIL BAG

J. Stataltis, of 25 Poplar Pl., Water. several sets tor my frlends, and made was ready co° Edu-nd $\$ 240$ for itself. I kut ! lound your ad and sent for your Utah: " Vaterlo, Pdits O. Box 21, Magna, am sending you the questions and also the answers for them. I have been in Radio for the last seven years, but the oyed every, minute, worked with the difterent kits; the signal Tracer works feel proud of becoming a member of your Radio-TV Cluts, ${ }^{\text {Po }}$ Robert 2534 Monroe untinkton, \mathbf{w}. Va, 'Shoushtree Ave. rop you a few lines to say that 1 re. hat my Edu-kit, and was realiy amazed low price. I have already sfarted pairing radios and phonographs. My et were really surprised O see the roubte-shooting Tester that comes with the kit is really swell. and finis the
trouble, if there is any to be found."

PRINTED CIRCUITRY

At no increase in price. the "Edu-kit" now inciudes Printed Circuitry. You bulid a Printed Circuit Signal Injector. a unique servieing instrument that can detect many Radio and TV troubles. This revolutionary new technique of radio construction is now becoming popular in commercial padio and TV sets.
A Printed Circuit is a special insulated chassis on which has been deposited a con. ducting material which takes the place of wiring. The various parts are merely plugged in and soldered to torminals.
Printed Circuitry is the basis of modern Automation Electronics. A knowledge of this subject is a necessity today for anyone 1 in . terested in Electronics.

Padio.TV

 EXPERIMENTER

 EXPERIMENTER}
grisats haviche Fic

SPECIAL ISSUE: Celebrating 100 years of radio!

 Trace radio's exciting history * Enjoy our new ham column Dig those cool CB clubs * Pick the SW recelyer kit for you

3-1ube, 2-meter superragen

PLUS -

Add color to any TV set
Bulld poorman's drunkometer DX erooks and clandestines

[^0]: HIGH SCHOOL AT HOME
 Natıonal offers accredited high school programs. Take only subjects you need. Study at your own pace. Everything included at one low tuition. Check speclal High School box in coupon for full informatlon \& FREE catalog.

 CLASSROOM TRAINING AT LOS ANGELES
 You can take Classroom Training at Los Angeles in Sunny Southern Californla. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training.

 MAIL REPLY CARD OR COUPON FOR NEW, FREE COLOR CATALOG AND SAMPLE LESSON.

 NATIONAL TECnMical SCHOOLS
 World Wide Tralining Since 1905
 4000 S . Figueroa St., Los Angeles, Calif. 90037
 You enroll by mail
 We have no salesmen: This means lower tuition for you.
 Accredited Member National Home Study Council. Accredited
 Member: National Association of Trade \& Technical Schoels NATIONAL TECnMical SCHOOLS
 World Wide Tralining Since 1905
 4000 S . Figueroa St., Los Angeles, Calif. 90037
 You enroll by mail
 We have no salesmen: This means lower tuition for you.
 Accredited Member National Home Study Council. Accredited
 Member: National Association of Trade \& Technical Schoels NATIONAL TECnMical SCHOOLS
 World Wide Tralining Since 1905
 4000 S . Figueroa St., Los Angeles, Calif. 90037
 You enroll by mail
 We have no salesmen: This means lower tuition for you.
 Accredited Member National Home Study Council. Accredited
 Member: National Association of Trade \& Technical Schoels

 ## NATIONAI. SCHOOLS APPROVED FERR VETERAMS

 7 NATIONAL TECnMical SCHOOLS
 World Wide Tralining Since 1905
 4000 S . Figueroa St., Los Angeles, Calif. 90037
 You enroll by mail
 We have no salesmen: This means lower tuition for you.
 Accredited Member National Home Study Council. Accredited
 Member: National Association of Trade \& Technical Schoels
 Ploase rush Free Color Catalog and Sample Lesson, plus detailed
 information on field chocked below. No obligation.
 \square MASTER COURSE IN COLOR TV SERVICINE
 \square COLOR TV SERVICING
 \square MASTER COURSE IN TV 2 RADIO SERVICINE
 \square PRACTICAL TV \& RADIO SERVICING
 \square MASTER COURSE IN ELECTRONIC COMMUNICATIONS
 \square FCC LICENSE COURSE
 \square INDUSTRIAL \& COMPUTER ELECTRONICS
 STEREO, HI FI \& SOUND SYSTEMS
 BASIC ELECTRONICS
 HIGH SCHOOL AT HOME

 RADIO-TV EXPERIMENTER is published bimonthly a $\$ 4.00$ per year, by Science \& Mechanics Publishing Co., 505 Park Avenue, New York, N.Y. 10022. Second class postage paid at New York, N.Y., and at additional mailing office. Copyright 1987 by Science and Mechanics Publishing Co.

[^1]: - Easy-to-Read 2.Color Full View Mirrored Scalel

[^2]: To use the table put your finger on the region you want to hear and log, move your finger down until it is alongside the local standard time at which you will be listening and lift your finger. Underneath your pointing digit will be the shortwave band or bands that will give the best DX results. The time in the above propagation prediction table is given in standard time at the listener's location which effectively compensates for differences in propagation characteristics between the East and West coasts of North America. However, Asia and the South Pacific stations will generally be received stronger in the West while Europe and Africa will be easier to tune on the East coast. The shortwave bands in brackets are given as second choices. Refer to White's Radio Log for World-Wide Shortwave Broadcast Stations list.

[^3]: - Send your Imagineering Design Tips with full details and a photo or drawing to Radio-TV Experimenter, 505 Park Ave., New York, N. Y. 10022. The top ideas selected by the editors will win $\$ 10.00$ each. Entries become the property of Radio-TV Experimenter and can't be returned.

